欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

9.在(1+x)2018展開式中,系數(shù)最大的項(xiàng)是(  )
A.第1010項(xiàng)B.第1009項(xiàng)
C.第1008項(xiàng)D.第1010項(xiàng)和第1009項(xiàng)

分析 利用二項(xiàng)展開式的通項(xiàng)公式求出通項(xiàng),得出二項(xiàng)式系數(shù)與系數(shù)相等,據(jù)展開式中間項(xiàng)的二項(xiàng)式系數(shù)最大求出最大系數(shù).

解答 解:(1+x)2018的通項(xiàng)為Tr+1=C2018rxr
∴(1+x)2018的展開式的二項(xiàng)式系數(shù)與展開式的系數(shù)相等
據(jù)展開式中間項(xiàng)的二項(xiàng)式系數(shù)最大
又展開式共有2019項(xiàng)
∴系數(shù)最大的項(xiàng)是1010項(xiàng),
故選:A

點(diǎn)評(píng) 本題考查二項(xiàng)式的通項(xiàng)公式及二項(xiàng)式系數(shù)的性質(zhì):展開式中間項(xiàng)的二項(xiàng)式系數(shù)最大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知$\overrightarrow{AB},\overrightarrow{AC}$不共線,$\overrightarrow{AP}$=λ($\overrightarrow{AB}$+$\overrightarrow{AC}$))(λ∈R),則點(diǎn)P的軌跡一定過△ABC的( 。
A.重心B.內(nèi)心C.外心D.垂心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.過原點(diǎn)O作斜率為k1(k1≠0)的直線l交拋物線Γ:y=$\frac{1}{4}$x2-1于A,B 兩點(diǎn),
(1)當(dāng)k1=1時(shí),求$\frac{1}{|OA|}$+$\frac{1}{|OB|}$的值;
(2)已知M(0,3),延長AM交拋物線Γ于C點(diǎn),延長BM交拋物線Γ于D點(diǎn).記直線CD的斜率為k2,問是否存在實(shí)數(shù)λ,都有k2=λk1成立,如果存在,請(qǐng)求出λ的值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x)=$\frac{2x-a}{{x}^{2}+2}$( x∈R)在區(qū)間[1,2]上是增函數(shù).
(1)若函數(shù)f(x)在區(qū)間[1,2]上是增函數(shù),求實(shí)數(shù)a的值組成的集合A;
(2)設(shè)關(guān)于x的方程f(x)=$\frac{1}{x}$的兩個(gè)非零實(shí)根為x1、x2.試問:是否存在實(shí)數(shù)m,使得不等式m2+tm+1≤|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列求導(dǎo)運(yùn)算正確的個(gè)數(shù)是( 。
①$(x-\frac{1}{x})'=1+\frac{1}{x^2}$、
②(log2x)′=$\frac{1}{xln2}$
③(3x)′=3xlog3x             
④(x2cosx)′=-2xsinx.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)an(n=2,3,4,…)是(3+$\sqrt{x}$)n的展開式中x的一次項(xiàng)的系數(shù),則$\frac{2017}{1008}$($\frac{{3}^{2}}{{a}_{2}}$+$\frac{{3}^{3}}{{a}_{3}}$+…+$\frac{{3}^{2017}}{{a}_{2017}}$)的值是36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.請(qǐng)閱讀:在等式cos2x=2cos2x-1(x∈R)的兩邊對(duì)x求導(dǎo),得(-sin2x)•2=4cosx(-sinx),化簡后得等式sin2x=2cosxsinx.
利用上述方法,試由等式${(1+x)^n}=C_n^0+C_n^1x+…+C_n^{n-1}{x^{n-1}}+C_n^n{x^n}$(x∈R,正整數(shù)n≥2),
(1)證明:$n[{(1+x)^{n-1}}-1]=\sum_{k=2}^n{kC_n^k{x^{k-1}}}$;(注:$\sum_{i=1}^n{{a_i}={a_1}+{a_2}+…+{a_n}}$)
(2)求$C_{10}^1+2C_{10}^2+3C_{10}^3+…+10C_{10}^{10}$;
(3)求${1^2}C_{10}^1+{2^2}C_{10}^2+{3^2}C_{10}^3+…+{10^2}C_{10}^{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.化簡下列各式:
(1)sin(3π+α)+tan(α-π)sin($\frac{π}{2}$+α)
(2)$\frac{1-tan15°}{1+tan15°}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.7人站成一排,求滿足下列條件的不同站法:
(1)甲、乙兩人相鄰;
(2)甲、乙之間隔著2人;
(3)若7人順序不變,再加入3個(gè)人,要求保持原先7人順序不變;
(4)甲、乙、丙3人中從左向右看由高到底(3人身高不同)的站法;
(5)若甲、乙兩人去坐標(biāo)號(hào)為1,2,3,4,5,6,7的七把椅子,要求每人兩邊都有空位的坐法.

查看答案和解析>>

同步練習(xí)冊(cè)答案