分析 直接利用向量的平行的充要條件,轉(zhuǎn)化為三角方程,然后求解α的大。
解答 解:α是銳角,$\overrightarrow{a}$=($\frac{3}{4}$,sinα),$\overrightarrow$=(cosα,$\frac{1}{3}$),且$\overrightarrow{a}$∥$\overrightarrow$,
可得sinαcosα=$\frac{3}{4}×\frac{1}{3}$=$\frac{1}{4}$,
即sin2$α=\frac{1}{2}$,
∴α=15°或75°.
故答案為:15或75.
點(diǎn)評(píng) 本題考查向量的共線的充要條件,三角函數(shù)的求值,考查計(jì)算能力.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | -1 | C. | -i | D. | i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 若an>0,(n∈N*),則{lgan}是等差數(shù)列 | |
| B. | 若an>0,(n∈N*),則$\frac{{a}_{1}+{a}_{n+2}}{2}$≥$\sqrt{{a}_{2}{a}_{n+1}}$ | |
| C. | an+1一定是an與an+2的等比中項(xiàng) | |
| D. | an-r與an+r(r<n,r,n∈N*)的等比中項(xiàng)一定是an |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com