已知數(shù)列{a
n}的前n項(xiàng)和為S
n,且S
n=n(n+1)(n∈N
*).
(Ⅰ)求數(shù)列{a
n}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{b
n}滿足:
an=+++…+,求數(shù)列{b
n}的通項(xiàng)公式;
(Ⅲ)令
cn=(n∈N
*),求數(shù)列{c
n}的前n項(xiàng)和T
n.
(Ⅰ)當(dāng)n=1時(shí),a
1=S
1=2,
當(dāng)n≥2時(shí),a
n=S
n-S
n-1=n(n+1)-(n-1)n=2n,
知a
1=2滿足該式,
∴數(shù)列{a
n}的通項(xiàng)公式為a
n=2n.(2分)
(Ⅱ)∵
an=+++…+(n≥1)①
∴
an+1=+++…++②(4分)
②-①得:
=an+1-an=2,
b
n+1=2(3
n+1+1),
故b
n=2(3
n+1)(n∈N
*).(6分)
(Ⅲ)
cn==n(3
n+1)=n•3
n+n,
∴T
n=c
1+c
2+c
3+…+c
n=(1×3+2×3
2+3×3
3+…+n×3
n)+(1+2+…+n)(8分)
令H
n=1×3+2×3
2+3×3
3+…+n×3
n,①
則3H
n=1×3
2+2×3
3+3×3
4+…+n×3
n+1②
①-②得:-2H
n=3+3
2+3
3+…+3
n-n×3
n+1
=
-n×3n+1∴
Hn=,…(10分)
∴數(shù)列{c
n}的前n項(xiàng)和
Tn=+…(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
19、已知數(shù)列{an}的前n項(xiàng)和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知數(shù)列{an}的前n項(xiàng)和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知數(shù)列{a
n}的前n項(xiàng)和S
n=n
2+n+1,那么它的通項(xiàng)公式為a
n=
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
13、已知數(shù)列{a
n}的前n項(xiàng)和為Sn=3
n+a,若{a
n}為等比數(shù)列,則實(shí)數(shù)a的值為
-1
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項(xiàng)公式an.
(2)求Sn.
查看答案和解析>>