欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

15.已知函數(shù)y=f(x)對(duì)于任意的$x∈(-\frac{π}{2},\frac{π}{2})$滿足f′(x)cosx+f(x)sinx>0(其中f′(x)是函數(shù)f(x)的導(dǎo)函數(shù)),則下列不等式不成立的是(  )
A.$\sqrt{2}f(\frac{π}{3})<f(\frac{π}{4})$B.$\sqrt{2}f(-\frac{π}{3})<f(-\frac{π}{4})$C.$f(0)<\sqrt{2}f(\frac{π}{4})$D.$f(0)<2f(\frac{π}{3})$

分析 根據(jù)條件構(gòu)造函數(shù)g(x)=$\frac{f(x)}{cosx}$,求函數(shù)的導(dǎo)數(shù),利用函數(shù)的單調(diào)性和導(dǎo)數(shù)之間的關(guān)系即可得到結(jié)論

解答 解:構(gòu)造函數(shù)g(x)=$\frac{f(x)}{cosx}$,
則g′(x)=$\frac{f′(x)cosx-f(x)cos′(x)}{{cos}^{2}x}$=$\frac{1}{{cos}^{2}x}$[(f′(x)cosx+f(x)sinx],
∵對(duì)任意的x∈(-$\frac{π}{2}$,$\frac{π}{2}$)滿足f′(x)cosx+f(x)sinx>0,
∴g′(x)>0,即函數(shù)g(x)在x∈(-$\frac{π}{2}$,$\frac{π}{2}$)單調(diào)遞增,
則②g(-$\frac{π}{3}$)<g(-$\frac{π}{4}$),即$\frac{f(-\frac{π}{3})}{cos(-\frac{π}{3})}$<$\frac{f(-\frac{π}{4})}{cos(-\frac{π}{4})}$,
∴$\frac{f(-\frac{π}{3})}{\frac{1}{2}}$<$\frac{f(-\frac{π}{4})}{\frac{\sqrt{2}}{2}}$,即 $\sqrt{2}$f(-$\frac{π}{3}$))<f(-$\frac{π}{4}$),故B正確;
③g(0)<g($\frac{π}{4}$),即$\frac{f(0)}{cos0}$<$\frac{f(\frac{π}{4})}{cos\frac{π}{4}}$,
∴f(0)<$\sqrt{2}$f($\frac{π}{4}$),故③正確;
④g(0)<g($\frac{π}{3}$),即 $\frac{f(0)}{cos0}$<$\frac{f(\frac{π}{3})}{cos\frac{π}{3}}$,
∴f(0)<2f($\frac{π}{3}$),故④正確;
由排除法,
故選:A

點(diǎn)評(píng) 本題主要考查函數(shù)單調(diào)性的應(yīng)用,利用條件構(gòu)造函數(shù)是解決本題的關(guān)鍵,綜合性較強(qiáng),有一點(diǎn)的難度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)直線ax+2y+6=0與圓C:x2+y2-2x+4y+1=0相交于點(diǎn)P,Q兩點(diǎn),CP⊥CQ,則實(shí)數(shù)a的值為( 。
A.1B.2C.1或2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.利用計(jì)算機(jī)產(chǎn)生0~1之間的均勻隨機(jī)數(shù)a,b,則事件“$\left\{\begin{array}{l}{3a-1>0}\\{3b-1>0}\end{array}\right.$”發(fā)生的概率為( 。
A.$\frac{4}{9}$B.$\frac{1}{9}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,則下面判斷正確的是( 。
A.在區(qū)間(-2,1)內(nèi)f(x)是增函數(shù)B.在(1,3)內(nèi)f(x)是減函數(shù)
C.在(4,5)內(nèi)f(x)是增函數(shù)D.在x=2時(shí)f(x)取到極小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知f(x)=x3-ax在(-∞,-1]上遞增,則a的取值范圍是( 。
A.a>3B.a≥3C.a<3D.a≤3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.省工商局于2003年3月份,對(duì)全省流通領(lǐng)域的飲料進(jìn)行了質(zhì)量監(jiān)督抽查,結(jié)果顯示,某種剛進(jìn)入市場(chǎng)的x飲料的合格率為80%,現(xiàn)有甲、乙、丙3人聚會(huì),選用6瓶x飲料,并限定每人喝2瓶.則甲喝2瓶合格的x飲料的概率是0.64.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知某海濱浴場(chǎng)海浪的高度y(米)是時(shí)間t (0≤t≤24,單位:小時(shí))函數(shù),記作:y=f(t),下表是某日各時(shí)的浪高數(shù)據(jù):
t(時(shí))03691215182124
y(米)1.410.880.390.911.380.900.420.891.40
經(jīng)長(zhǎng)期觀察,y=f(t)的曲線,可以近似地看成函數(shù)y=Acos(ωt)+b的圖象.
(1)根據(jù)以上數(shù)據(jù)(對(duì)浪高采用精確到0.1的數(shù)據(jù)),求出函數(shù)y=Acos(ωt)+b的最小正周期T,振幅A及函數(shù)表達(dá)式;
(2)依據(jù)規(guī)定,當(dāng)海浪高度高于1米時(shí)才對(duì)沖浪愛好者開放,請(qǐng)依據(jù)(1)的結(jié)論,判斷一天內(nèi)的上午8:00時(shí)至晚上20:00時(shí)之間,有多少時(shí)間可供沖浪者進(jìn)行運(yùn)動(dòng)?
(參考數(shù)據(jù)cos$\frac{7π}{16}$≈0.2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,若a=55,b=16,且此三角形的面積S=220$\sqrt{3}$,求角C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.圖中還有“哺乳動(dòng)物”“地龜”“長(zhǎng)尾雀”三項(xiàng)未填,請(qǐng)將這三項(xiàng)填在①、②、③所在的空格內(nèi).

①哺乳動(dòng)物 ②地龜、坶L(zhǎng)尾雀.

查看答案和解析>>

同步練習(xí)冊(cè)答案