科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,△ABC的位置如圖所示.
![]()
(1)分別寫出△ABC各個頂點的坐標;
(2)分別寫出頂點A關于x軸對稱的點A′的坐標、頂點B關于y軸對稱的點B′的坐標及頂點C關于原點對稱的點C′的坐標;
(3)求線段BC的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在平行四邊形ABCD中,對角線BD⊥AB,以BD為對稱軸將△ABD翻折,點A的對應點為A′,連接A′C,得到圖2.
推理證明
(1)求證:四邊形A′BDC是矩形;
實踐操作
(2)在圖1中將△ABD或△BDC進行平移、旋轉或軸對稱變換,重新構造一個特殊四邊形.
要求:①畫出圖形,標明字母;②寫出構圖過程及構造的特殊四邊形的名稱.(不要求證明)
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知在△ABC中,∠A=60°,∠C=90°,將△ABC繞點B順時針旋轉150°,得到△DBE.請僅用無刻度的直尺,按要求畫圖(保留畫圖痕跡,在圖中標出字母,并在圖下方表示出所畫圖形).
(1)在圖①中,畫一個等邊三角形;
(2)在圖②中,畫一個等腰直角三角形.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,二次函數(shù)y=ax2+bx+3的圖象經(jīng)過點A(3,0)和點B(4,3).
(1)求二次函數(shù)的表達式;
(2)求二次函數(shù)圖象的頂點坐標和對稱軸.
(3)直接畫出函數(shù)的圖象(不列表).
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD的對角線AC、BD相交于點O.有直角∠MPN,使直角頂點P與點O重合,直角邊PM、PN分別與OA、OB重合,然后逆時針旋轉∠MPN,旋轉角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點,連接EF交OB于點G,則下列結論中正確的是 .
(1)EF=
OE;(2)S四邊形OEBF:S正方形ABCD=1:4;(3)BE+BF=
OA;(4)在旋轉過程中,當△BEF與△COF的面積之和最大時,AE=
;(5)OGBD=AE2+CF2.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,對稱軸為x=1,經(jīng)過點(-1,0),有下列結論:①abc<0;②a+c>b;③3a+c=0;④a+b>m(am+b)(其中m≠1)其中正確的結論有( )
![]()
A. 1個
B. 2個
C. 3個
D. 4個
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線AB與x軸,y軸分別交于點A(6,0),B(0,8),動點C從點B出發(fā),沿射線BO方向以每秒1個單位的速度運動,同時動點D從點A出發(fā),沿x軸正方向以每秒1個單位的速度運動,連結CD交直線AB于點E,設點C運動的時間為t秒.
![]()
(1)當點C在線段BO上時,
①當OC=5時,求點D的坐標;
②問:在運動過程中,
的值是否為一個不變的值?若是,請求出
的值,若不是,請說明理由?
(2)是否存在t的值,使得△BCE與△DAE全等?若存在,請求出所有滿足條件的t的值;不存在,請說明理由.
(3)過點E作AB的垂線交x軸于點H,交y軸于點G(如圖),當以點C為圓心,CE長 為半徑的⊙C經(jīng)過點G或點H時,請直接寫出所有滿足條件的t的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如果三角形的兩個內角α與β滿足2α+β=90°,那么我們稱這樣的三角形為“準互余三角形”.
(1)若△ABC是“準互余三角形”,∠C>90°,∠A=60°,則∠B= °;
(2)如圖①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分線,不難證明△ABD是“準互余三角形”.試問在邊BC上是否存在點E(異于點D),使得△ABE也是“準互余三角形”?若存在,請求出BE的長;若不存在,請說明理由.
(3)如圖②,在四邊形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“準互余三角形”,求對角線AC的長.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】圖1是一個小朋友玩“滾鐵環(huán)”的游戲,鐵環(huán)是圓形的,鐵環(huán)向前滾動時,鐵環(huán)鉤保持與鐵環(huán)相切.將這個游戲抽象為數(shù)學問題,如圖2.已知鐵環(huán)的半徑為25 cm,設鐵環(huán)中心為O,鐵環(huán)鉤與鐵環(huán)相切點為M,鐵環(huán)與地面接觸點為A,∠MOA=α,且sinα=
.
(1)求點M離地面AC的高度BM;
(2)設人站立點C與點A的水平距離AC=55 cm,求鐵環(huán)鉤MF的長度.
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com