科目: 來源: 題型:
【題目】如圖,在邊長為2的正方形ABCD中,E,F分別為BC、CD的中點,連接AE,BF交于點G,將△BCF沿BF對折,得到△BPF,延長FP交BA延長線于點Q,下列結論正確都有( 。﹤.
①QB=QF;②AE⊥BF;③
;④
;④S四邊形ECFG=2S△BGE
![]()
A.5B.4C.3D.2
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形紙片ABCD中,AD∥BC,∠B=90°,BC=CD=6, ∠C=60°.點E是邊AD上一點,連接BE,將△ABE沿BE翻折得到△HBE .
(1)當點B、D、H三點在一直線上時,求線段AE的長;
(2)當點A的對稱點H正好落在DC上時,有動點P從點H出發(fā)沿線段HB向點B運動,同時動點Q從點B出發(fā)沿線段BA向點A運動,速度均為每秒1個單位長度,連接PQ交折痕BE于點M.設運動時間為t秒.
① 探究:當時間t為何值時,△PBM為等腰三角形;
② 連接AM,請直接寫出BM+2AM的最小值是 .
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,二次函數
的圖象與
軸的負半軸和正半軸分別交于A、B兩點,與y軸交于點C,頂點為P,直線
與過點B且垂直于
軸的直線交于點D,且CP:PD=1:2,tan∠PDB=
.
(1)請直接寫出A、B兩點的坐標:A , B ;
(2)求這個二次函數的解析式;
(3)在拋物線的對稱軸上找一點M使|MC-MB|的值最大,則點M的坐標為____.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】水果店購進某種水果的成本為10元/千克,經市場調研,獲得銷售單價p(元/千克)與銷售時間t(1≤t≤15,t為整數)(天)之間的部分數據如下表:
銷售時間t(1≤t≤15,t為整數)(天) | 1 | 4 | 5 | 8 | 12 |
銷售單價p(元/千克) | 20.25 | 21 | 21.25 | 22 | 23 |
已知p與t之間的變化規(guī)律符合一次函數關系.
(1)試求p關于t的函數表達式;
(2)若該水果的日銷量y(千克)與銷售時間t(天)的關系滿足一次函數y=-2t+120(1≤t≤15,t為整數).
① 求銷售過程中最大日銷售利潤為多少?
② 在實際銷售的前12天中,公司決定每銷售1千克水果就捐贈n元利潤(n<3)給“精準扶貧”對象.現發(fā)現:在前12天中,每天扣除捐贈后的日銷售利潤隨時間t的增大而增大,求n的取值范圍
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,AB是⊙O的直徑,DM切⊙O于點D,過點A作AE⊥DM,垂足為E,交⊙O于點C,連接AD.
(1)求證:AD是∠BAC的平分線;
(2)連接CD,若
,半徑為5,求CE的長.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】在一次數學活動中,老師準備三張完全相同的紙片,紙片上分別寫有如圖所示圖形的一個條件:①AD=BC;②AB∥DC;③AO=OC,小明同學從三張紙片中任意抽取兩張.請你用樹狀圖或表格表示出抽取兩張紙片上的條件所有可能出現的結果(用序號表示),并求出上述條件下四邊形ABCD是平行四邊形的概率.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】每到春夏交替時節(jié),雌性楊樹會以滿天飛絮的方式來傳播下一代,漫天飛舞的楊絮易引發(fā)皮膚病、呼吸道疾病等,給人們造成困擾,為了解市民對治理楊絮方法的贊同情況,某課題小組隨機調查了部分市民(問卷調查表如表所示),并根據調查結果繪制了如下尚不完整的統(tǒng)計圖.
![]()
根據以上統(tǒng)計圖,解答下列問題:
(1)本次接受調查的市民共有 人;
(2)扇形統(tǒng)計圖中,扇形E的圓心角度數是 °;
(3)請補全條形統(tǒng)計圖;
(4)若該市約有90萬人,請估計贊同“選育無絮楊品種,并推廣種植”的人數.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示拋物線
過點
,點
,且![]()
(1)求拋物線的解析式及其對稱軸;
(2)點
在直線
上的兩個動點,且
,點
在點
的上方,求四邊形
的周長的最小值;
(3)點
為拋物線上一點,連接
,直線
把四邊形
的面積分為3∶5兩部分,求點
的坐標.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是圓O的直徑,O為圓心,AD、BD是半圓的弦,且∠PDA=∠PBD.延長PD交圓的切線BE于點E.
(1)證明:直線PD是⊙O的切線;
(2)如果∠BED=60°,PD=
,求PA的長;
(3)將線段PD以直線AD為對稱軸作對稱線段DF,點F正好在圓O上,如圖2,求證:四邊形DFBE為菱形.
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com