科目: 來源: 題型:
【題目】在某次數字變換游戲中,我們把整數0,1,2.…,100稱為“舊數”,游戲的變換規(guī)則是:將舊數先平方,再除以100,所得到的數稱為“新數”.
(1)請把舊數80和26按照上述規(guī)則變換為新數:
(2)經過上述規(guī)則變換后,我們發(fā)現許多舊數變小了.有人斷言:“按照上述變換規(guī)則,所有的新數都不等于它的舊數.”你認為這種說法對嗎?若不對,請求出所有不符合這一說法的舊數:
(3)請求出按照上述規(guī)則變換后減小了最多的舊數(要寫出解答過程).
查看答案和解析>>
科目: 來源: 題型:
【題目】下圖為某小區(qū)的兩幢1O層住宅樓,由地面向上依次為第1層、第2層、…、第10層,每層的高度為3m,兩樓間的距離AC=30m.現需了解在某一時段內,甲樓對乙樓的采光的影響情況.假設某一時刻甲樓樓頂B落在乙樓的影子長EC=h,太陽光線與水平線的夾角為α.
(1)用含α的式子表示h;
(2)當α=30°時,甲樓樓頂B的影子落在乙樓的第幾層?從此時算起,若α每小時增加10°,幾小時后,甲樓的影子剛好不影響乙樓采光.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】我市部分學生參加了全國初中數學競賽決賽,并取得優(yōu)異成績.已知競賽成績分數都是整數,試題滿分為140分,參賽學生的成績分數分布情況如下:
分數段 | 0-19 | 20-39 | 40-59 | 60-79 | 80-99 | 100-119 | 120-140 |
人數 | 0 | 37 | 68 | 95 | 56 | 32 | 12 |
請根據以上信息解答下列問題:
(1)全市共有多少人參加本次數學競賽決賽?最低分和最高分在什么分數范圍?
(2)經競賽組委會評定,競賽成績在60分以上(含60分)的考生均可獲得不同等級的獎勵,求我市參加本次競賽決賽考生的獲獎比例;
(3)決賽成績分數的中位數落在哪個分數段內?
(4)上表還提供了其他信息,例如:“沒獲獎的人數為105人”等等.請你再寫出兩條此表提供的信息.
查看答案和解析>>
科目: 來源: 題型:
【題目】下圖中的方格圖均是由邊長為1的小正方形組成的,現通過圖形變換將圖1中陰影部分的圖形割補成一個正方形。其思想方法是:由于要拼成的正方形的面積為“5”(由5個小正方形組成),則正方形的邊長為
,而
=
。因此,具體做法是:①連結A1A3、A1A5;②將△A1A2A3繞A3沿順時針方向旋轉90°;③將△A1A5A6繞A5沿逆時針方向旋轉90°;④將小正方形A1A6A7A8先向左平移2個單位,再向上平移1個單位。圖中四邊形A1A3A4A5即是所求作的正方形。仿照此方法將圖2中的陰影部分的圖形割補成正方形。(要求:直接在圖上畫出圖形,并寫出一種具體做法。)
![]()
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正五邊形ABCDE中,DC和AB的延長線交于F,則圖中與△DBF相似的三角形有(不再添加其他的線段和字母,不包括△DBF本身) ( )
![]()
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目: 來源: 題型:
【題目】問題:如圖(1),點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數量關系.
【發(fā)現證明】小聰把△ABE繞點A逆時針旋轉90°至△ADG,從而發(fā)現EF=BE+FD,請你利用圖(1)證明上述結論.
【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點E、F分別在邊BC、CD上,則當∠EAF與∠BAD滿足 關系時,仍有EF=BE+FD;請證明你的結論.
![]()
【探究應用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點E、F,且AE⊥AD,DF=40(
﹣1)米,現要在E、F之間修一條筆直道路,求這條道路EF的長.(結果取整數,參考數據:
=1.41,
=1.73)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,二次函數y=﹣
+mx+4﹣m的圖象與x軸交于A、B兩點(A在B的左側),與),軸交于點C.拋物線的對稱軸是直線x=﹣2,D是拋物線的頂點.
(1)求二次函數的表達式;
(2)當﹣
<x<1時,請求出y的取值范圍;
(3)連接AD,線段OC上有一點E,點E關于直線x=﹣2的對稱點E'恰好在線段AD上,求點E的坐標.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,OA和OB是⊙O的半徑,OB=2,OA⊥OB,P是OA上任一點,BP的延長線交⊙O于點Q,過點Q的⊙O的切線交OA延長線于點R.
(1)求證:RP=RQ;
(2)若OP=PQ,求PQ的長.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,可以自由轉動的轉盤被它的兩條直徑分成了四個分別標有數字的扇形區(qū)域,其中標有數字“1”的扇形圓心角為120°.轉動轉盤,待轉盤自動停止后,指針指向一個扇形的內部,則該扇形內的數字即為轉出的數字,此時,稱為轉動轉盤一次(若指針指向兩個扇形的交線,則不計轉動的次數,重新轉動轉盤,直到指針指向一個扇形的內部為止)
(1)轉動轉盤一次,求轉出的數字是-2的概率;
(2)轉動轉盤兩次,用樹狀圖或列表法求這兩次分別轉出的數字之積為正數的概率.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】甲、乙兩人相約元旦登山,甲、乙兩人距地面的高度y(m)與登山時間x(min)之間的函數圖像如圖所示,根據圖像所提供的信息解答下列問題:
(1)t= min.
(2)若乙提速后,乙登山的上升速度是甲登山的上升速度3倍,
①則甲登山的的上升速度是 m/min;
②請求出甲登山過程中,距地面的高度y(m)與登山時間x(min)之間的函數關系式.
③當甲、乙兩人距地面高度差為70m時,求x的值(直接寫出滿足條件的x值).
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com