科目: 來源: 題型:
【題目】(1)如圖1,點C在以AB為直徑的⊙O上,AD與過點C的切線CD垂直,垂足為點D.
求證:AC平分∠DAB;
(2)如圖2,△ABC為等腰三角形,AB=AC,O是BC的中點,AB與⊙O相切于點D.
求證:
是⊙
的切線.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=60°,AC=2AB,AD平分∠BAC交BC于點D,延長DB至點F,使BF=BD連接AF.
(1)求證:AF=CD.
(2)若CE平分∠ACB交AB于點E,試猜想AC,AF,AE三條線段之間的數(shù)量關(guān)系,并證明你的猜想.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知AB⊥BD,CD⊥BD點P是BD上一點.
(1)若∠APC=90°.求證:△PAB∽△CPD;
(2)若△PAB與△PCD相似,AB=9,BP=6,CD=4.求PD的長.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將三角板的直角頂點放在P(5,5)處,兩條直角邊與坐標(biāo)軸分別交于點A和點B.
(1)如圖(1),點A、點B分別在x軸、y軸正半軸上運動時,試探究OA+OB是否為一定值,若是,求出這個定值,若不是,請說明理由.
(2)如圖(2),點
在x軸正半軸上運動,點
在y軸的負(fù)半軸上運動時,求
的值.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】四邊形ABCD的對角線AC將其分割成兩個三角形:
(1)如圖1.若∠BAC=∠DAC,AB>AD,求證:AB-AD>CB-CD.
(2)如圖2.若∠ACD+∠BAC=180°,∠B=∠D,求證:BC=AD.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB、CD是⊙O的直徑,P為
上一個動點(不與B、C重合),PM、PN分別垂直CD、AB,垂足分別為點M、N.若∠AOC=60°,OA=4,則MN的長為________.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】學(xué)習(xí)了三角形全等的判定方法(即SSS,SAS,ASA,AAS)和直角三角形全等的判定方法(即HL)后,我們繼續(xù)對“兩個三角形滿足兩邊和其中一邊的對角對應(yīng)相等”的情形進(jìn)行研究.
(初步思考)
我們不妨將問題用符號語言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后對∠B進(jìn)行分類,可以分為“∠B是直角、鈍角、銳角”三種情況進(jìn)行探究.
(深入探究)
第一種情況:當(dāng)∠B為銳角時,△ABC和△DEF不一定全等.
(1)如圖,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是銳角,請你用尺規(guī)在圖中確定點D,使△DEF和△ABC不全等(不寫作法,保留作圖痕跡);
第二種情況:當(dāng)∠B為直角時,△ABC≌△DEF.
(2)如圖,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根據(jù)____,可以知道Rt△ABC≌Rt△DEF.
第三種情況:當(dāng)∠B為鈍角時,△ABC≌△DEF.
(3)如圖,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是鈍角,求證:△ABC≌△DEF.
![]()
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點B在線段AC上,點E在線段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分別是AE,CD的中點。試探索BM和BN的關(guān)系,并證明你的結(jié)論。
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,在人教版八年級上冊數(shù)學(xué)教材P53的數(shù)學(xué)活動中有這樣一段描述:在四邊形ABCD中,若AD=CD,AB=CB,則我們把這種兩組鄰邊分別相等的四邊形叫做“箏形”,試猜想箏形的角.對角線有什么性質(zhì)?然后選擇其中一條性質(zhì)用全等三角形的知識證明你的猜想.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com