科目: 來源: 題型:
【題目】如圖,某開發(fā)區(qū)有一塊四邊形的空地ABCD,現(xiàn)計(jì)劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,則要投入_____元.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=2,O為AC中點(diǎn),若點(diǎn)D在直線BC上運(yùn)動(dòng),連接OE,則在點(diǎn)D運(yùn)動(dòng)過程中,則OE的最小值是為( 。
![]()
A.
B.0.25C.1D.2
查看答案和解析>>
科目: 來源: 題型:
【題目】為執(zhí)行“兩免一補(bǔ)”政策,某地區(qū)2014年投入教育經(jīng)費(fèi)2500萬元,預(yù)計(jì)到2016年,三年共投入8275萬元.設(shè)投入教育經(jīng)費(fèi)的年平均增長率為x,那么下列方程正確的是( )
A. 2500x2
8275 B. 2500(1+x%)2
8275
C. 2500(1+x)2
8275 D. 2500+2500(1+x)+2500(1+x)2
8275
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,D、E兩點(diǎn)分別在BC、AD上,且AD為∠BAC的角平分線,若∠ABE
∠C,AE:ED=2:1,則△BDE與△ABC的面積之比為( )
![]()
A. 1:6 B. 1:9 C. 2:13 D. 2:15
查看答案和解析>>
科目: 來源: 題型:
【題目】下列命題中,假命題的是( )
A.在△ABC中,若∠B+∠C=∠A,則△ABC是直角三角形
B.在△ABC中,若a2=(b+c)(b﹣c),則△ABC是直角三角形
C.在△ABC中,若∠A:∠B:∠C=1:2:3,則△ABC是直角三角形
D.在△ABC中,若a=32,b=42,c=52,則△ABC是直角三角形
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,直線l1:
與坐標(biāo)軸分別交于點(diǎn)A,B,與直線l2:
交于點(diǎn)C.
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)求△BOC的面積;
(3)如圖2,若有一條垂直于x軸的直線l以每秒2個(gè)單位的速度從點(diǎn)A出發(fā)沿射線AO方向作勻速滑動(dòng),分別交直線l1,l2及x軸于點(diǎn)M,N和Q.設(shè)運(yùn)動(dòng)時(shí)間為t(s),連接CQ.
①當(dāng)OA=2MN時(shí),求t的值;
②試探究是否存在點(diǎn)Q,使得以△OQC為等腰三角形?若存在,請(qǐng)直接寫出t的值;若不存在,請(qǐng)說明理由
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c的圖象與x軸相交于A(﹣1,0),B(3,0)兩點(diǎn),與y軸相交于點(diǎn)C(0,﹣3).
(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)若P是第四象限內(nèi)這個(gè)二次函數(shù)的圖象上任意一點(diǎn),PH⊥x軸于點(diǎn)H,與BC交于點(diǎn)M,連接PC.
①求線段PM的最大值;
②當(dāng)△PCM是以PM為一腰的等腰三角形時(shí),求點(diǎn)P的坐標(biāo).
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】大豐區(qū)在創(chuàng)建全國文明城市過程中,決定購買A,B兩種樹苗對(duì)某路段道路進(jìn)行綠化改造,已知購買A種樹苗5棵,B種樹苗10棵,需要1300元;購買A種樹苗3棵,B種樹苗5棵,需要710元.
(1)求購買A,B兩種樹苗每棵各需要多少元?
(2)現(xiàn)需購進(jìn)這兩種樹苗共100棵,其中A種樹苗購進(jìn)x棵,考慮到綠化效果和資金周轉(zhuǎn),A種樹苗不能少于30棵,且用于購買這兩種樹苗的資金不能超過8650元,試求x 的取值范圍。
(3)某包工隊(duì)承包了該項(xiàng)種植任務(wù),若種好一棵A種樹苗需付工錢15元,種好一棵B種樹苗需付工錢25元,在(2)的條件下,設(shè)種好這100棵樹苗共需付工錢y元,,試求出y與x的函數(shù)表達(dá)式,并寫出所付的種植工錢最少的購買方案及最少工錢是多少元。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在足夠大的空地上有一段長為a米的舊墻MN,某人利用舊墻和木欄圍成一個(gè)矩形菜園ABCD,其中AD≤MN,已知矩形菜園的一邊靠墻,另三邊一共用了100米木欄.
(1)若a=20,所圍成的矩形菜園的面積為450平方米,求所利用舊墻AD的長;
(2)求矩形菜園ABCD面積的最大值.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com