科目: 來源: 題型:
【題目】某校想了解學(xué)生每周的課外閱讀時間情況,隨機調(diào)查了部分學(xué)生,對學(xué)生每周的課外閱讀時間x(單位:小時)進行分組整理,并繪制了如圖所示的不完整的頻數(shù)分別直方圖和扇形統(tǒng)計圖:
![]()
根據(jù)圖中提供的信息,解答下列問題:
(1)補全頻數(shù)分布直方圖
(2)求扇形統(tǒng)計圖中m的值和E組對應(yīng)的圓心角度數(shù)
(3)請估計該校3000名學(xué)生中每周的課外閱讀時間不小于6小時的人數(shù)
查看答案和解析>>
科目: 來源: 題型:
【題目】(2014貴州黔東南)黔東南州某超市計劃購進一批甲、乙兩種玩具,已知5件甲種玩具的進價與3件乙種玩具的進價的和為231元,2件甲種玩具的進價與3件乙種玩具的進價的和為141元.
(1)求每件甲種、乙種玩具的進價分別是多少元;
(2)如果購進甲種玩具有優(yōu)惠,優(yōu)惠方法是:購進甲種玩具超過20件,超出部分可以享受7折優(yōu)惠.若購進x(x>0)件甲種玩具需要花費y元,請你求出y與x的函數(shù)關(guān)系式;
(3)在(2)的條件下,超市決定在甲、乙兩種玩具中選購其中一種,且數(shù)量超過20件,請你幫助超市判斷購進哪種玩具省錢.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知拋物線y=﹣
x2﹣
x+2與x軸交于A、B兩點,與y軸交于點C
(1)求點A,B,C的坐標;
(2)點E是此拋物線上的點,點F是其對稱軸上的點,求以A,B,E,F為頂點的平行四邊形的面積;
(3)此拋物線的對稱軸上是否存在點M,使得△ACM是等腰三角形?若存在,請求出點M的坐標;若不存在,請說明理由.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(﹣3,0),點 B是 y軸正半軸上一動點,點C、D在 x正半軸上.
(1)如圖,若∠BAO=60°,∠BCO=40°,BD、CE 是△ABC的兩條角平分線,且BD、CE交于點F,直接寫出CF的長_____.
(2)如圖,△ABD是等邊三角形,以線段BC為邊在第一象限內(nèi)作等邊△BCQ,連接 QD并延長,交 y軸于點 P,當(dāng)點 C運動到什么位置時,滿足 PD=
DC?請求出點C的坐標;
(3)如圖,以AB為邊在AB的下方作等邊△ABP,點B在 y軸上運動時,求OP的最小值.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖點 P 是等邊△ABC 內(nèi)一點,將△APC 繞點 C 順時針旋轉(zhuǎn) 60°得到△BDC,連接 PD.
![]()
(1)求證:△DPC 是等邊三角形;
(2)當(dāng)∠APC=150°時,試判斷△DPB 的形狀,并說明理由;
(3)當(dāng)∠APB=100°且△DPB 是等腰三角形,求∠APC 的度數(shù)。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,將邊長為
的正方形
的一邊
與直角邊分別是
和
的
的一邊
重合.正方形
以每秒
個單位長度的速度沿
向右勻速運動,當(dāng)點
和點
重合時正方形停止運動.設(shè)正方形的運動時間為
秒,正方形
與
重疊部分面積為S,則S關(guān)于
的函數(shù)圖象為( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知∠BAE+∠AED=180°,∠1=∠2,那么∠F=∠G嗎?為什么?
![]()
解:因為∠BAE+∠AED=180°( 已知)
所以AB∥CD________
所以∠BAE=∠AEC________
因為∠1=∠2( 已知)
所以∠BAE—∠1=∠AEC—∠2(等式性質(zhì))
即∠3=∠4
所以AF∥EG________,
所以∠F=∠G________.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:
,OB、OM、ON,是
內(nèi)的射線.
![]()
(1)如圖 1,若 OM 平分
, ON平分
.當(dāng)射線OB 繞點O 在
內(nèi)旋轉(zhuǎn)時,
= 度.
(2)OC也是
內(nèi)的射線,如圖2,若
,OM平分
,ON平分
,當(dāng)射線OB繞點O在
內(nèi)旋轉(zhuǎn)時,求
的大。
(3)在(2)的條件下,當(dāng)射線OB從邊OA開始繞O點以每秒
的速度逆時針旋轉(zhuǎn)t秒,如圖3,若
,求t的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com