科目: 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=6,∠B=60°,點G是CD邊的中點,點E、F分別是AG、AD上的兩個動點,則EF+ED的最小值是( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知:EF∥AD,∠1=∠2,∠B=55°,求∠BDG的大。
![]()
請同學(xué)們在下面的橫線上把解答過程補充完整:
解:∵ EF//AD, (已知)
∴ ∠2=∠3, ( )
又∵ ∠1=∠2, (已知)
∴ ∠1=∠3, (等量代換)
∴ ,(內(nèi)錯角相等,兩直線平行)
∴ ∠B+∠BDG=180°, ( )
∵ ∠B=55°, (已知)
∴ ∠BDG = .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一只跳蚤在第一象限及x軸、y軸上跳動,第一秒它從原點跳動到點(0,1),第二秒它從點(0,1)跳到點(1,1),然后接著按圖中箭頭所示方向跳動[即(0,0)→(0,1)→(1,1)→(1,0)→…],每秒跳動一個單位長度,那么30秒后跳蚤所在位置的坐標(biāo)是___.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD(請?zhí)羁眨?/span>
![]()
解:∵EF∥AD
∴∠2= (
又∵∠1=∠2
∴∠1=∠3( )
∴AB∥ ( )
∴∠BAC+ =180°( )
∵∠BAC=70°( )
∴∠AGD= ( )
查看答案和解析>>
科目: 來源: 題型:
【題目】在Rt△ABO中,∠AOB=90°,OA=
,OB=4,分別以OA、OB邊所在的直線建立平面直角坐標(biāo)系,D為x軸正半軸上一點,以OD為一邊在第一象限內(nèi)作等邊△ODE.
(1)如圖①,當(dāng)E點恰好落在線段AB上時,求E點坐標(biāo);
(2)在(Ⅰ)問的條件下,將△ODE沿x軸的正半軸向右平移得到△O′D′E′,O′E′、D′E′分別交AB于點G、F(如圖②)求證OO′=E′F;
(3)若點D沿x軸正半軸向右移動,設(shè)點D到原點的距離為x,△ODE與△AOB重疊部分的面積為y,請直接寫出y與x的函數(shù)關(guān)系式.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是圓O的直徑,O為圓心,AD、BD是半圓的弦,且∠PDA=∠PBD.延長PD交圓的切線BE于點E
(1)證明:直線PD是⊙O的切線.
(2)如果∠BED=60°,
,求PA的長.
(3)將線段PD以直線AD為對稱軸作對稱線段DF,點F正好在圓O上,如圖2,求證:四邊形DFBE為菱形.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,方格紙中每個小方格都是邊長為1的正方形,四邊形ABCD的頂點與點E都是格點.
(1)作出四邊形ABCD關(guān)于直線AC對稱的四邊形AB′CD′;
(2)求四邊形ABCD的面積;
(3)若在直線AC上有一點P,使得P到D、E的距離之和最小,請作出點P(請保留作圖痕跡),且求出PC=______.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】將長為20cm,寬為8cm的長方形白紙,按如圖所示的方式粘合起來,粘合部分的寬為3cm.
![]()
(1)根據(jù)題意,將下面的表格補充完整.
白紙張數(shù)x(張) | 1 | 2 | 3 | 4 | 5 | … |
紙條總長度y(cm) | 20 | 54 | 71 | … |
(2)直接寫出y與x的關(guān)系式.
(3)要使粘合后的長方形總面積為1656cm2,則需用多少張這樣的白紙?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com