科目: 來源: 題型:
【題目】如圖,直線y=
x+3交x軸于A點,將一塊等腰直角三角形紙板的直角頂點置于原點O,另兩個頂點M、N恰落在直線y=
x+3上,若N點在第二象限內(nèi),則tan∠AON的值為( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】汽車從甲地到乙地用去油箱中汽油的
,由乙地到丙地用去剩下汽油的
,油箱中還剩6升汽油.(假設甲地、乙地、丙地、丁地在同一直線上,且按上述順序分布).
(1)求油箱中原有汽油多少升?
(2)若甲、乙兩地相距22千米,則乙、丙兩地相距多遠?(汽車在行駛過程中行駛的路程與耗油量成正比).
(3)在(2)的條件下,若丁地距丙地10千米,問汽車在不加油的情況下,能否去丁地,然后再沿原路返回到甲地?
查看答案和解析>>
科目: 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AC=12.點D在直線CB上,以CA,CD為邊作矩形ACDE,直線AB與直線CE,DE的交點分別為F,G.
(1)如圖,點D在線段CB上,四邊形ACDE是正方形.
①若點G為DE中點,求FG的長.
②若DG=GF,求BC的長.
(2)已知BC=9,是否存在點D,使得△DFG是等腰三角形?若存在,求該三角形的腰長;若不存在,試說明理由.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形ABCD的四個頂點分別在反比例函數(shù)y=
與y=
(x>0,0<m<n)的圖象上,對角線BD∥y軸,且BD⊥AC于點P.已知點B的橫坐標為4.
(1)當m=4,n=20時.
①若點P的縱坐標為2,求直線AB的函數(shù)表達式.
②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.
(2)四邊形ABCD能否成為正方形?若能,求此時m,n之間的數(shù)量關(guān)系;若不能,試說明理由.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】已知
、
、
三點在同一條直線上,
平分
,
平分
.
![]()
(1)若
,求
;
(2)若
,求
;
(3)
是否隨
的度數(shù)的變化而變化?如果不變,度數(shù)是多少?請你說明理由,如果變化,請說明如何變化.
查看答案和解析>>
科目: 來源: 題型:
【題目】某校想了解學生每周的課外閱讀時間情況,隨機調(diào)查了部分學生,對學生每周的課外閱讀時間x(單位:小時)進行分組整理,并繪制了如圖所示的不完整的頻數(shù)分布直方圖和扇形統(tǒng)計圖:
![]()
根據(jù)圖中提供的信息,解答下列問題:
(1)共隨機調(diào)查了___名學生,課外閱讀時間在68小時之間有___人,并補全頻數(shù)分布直方圖;
(2)求扇形統(tǒng)計圖中m的值和E組對應的圓心角度數(shù);
(3)請估計該校3000名學生每周的課外閱讀時間不小于6小時的人數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=ax2+bx(a≠0)過點E(10,0),矩形ABCD的邊AB在線段OE上(點A在點B的左邊),點C,D在拋物線上.設A(t,0),當t=2時,AD=4.
(1)求拋物線的函數(shù)表達式.
(2)當t為何值時,矩形ABCD的周長有最大值?最大值是多少?
(3)保持t=2時的矩形ABCD不動,向右平移拋物線.當平移后的拋物線與矩形的邊有兩個交點G,H,且直線GH平分矩形的面積時,求拋物線平移的距離.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】某校八年級兩個班各選派10名學生參加“垃圾分類知識競賽,各參賽選手的成績?nèi)缦拢?/span>
八(1)班:88,91,92,93,93,93,94,98,98,100;
八(2)班:89,93,93,93,95,96,96,98,98,99
通過整理,得到數(shù)據(jù)分析表如下
班級 | 最高分 | 平均分 | 中位數(shù) | 眾數(shù) | 方差 |
八(1)班 | 100 |
| 93 | 93 | 12 |
八(2)班 | 99 | 95 |
|
| 8.4 |
(1)求表中
,
,
的值;
(2)依據(jù)數(shù)據(jù)分析表,有同學認為最高分在(1)班,(1)班的成績比(2)班好.但也有同學認為(2)班的成績更好.請你寫出兩條支持八(2)班成績更好的理由.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com