科目: 來源: 題型:
【題目】蘇科版九年級下冊數(shù)學(xué)課本91頁有這樣一道習(xí)題:
![]()
![]()
(1)復(fù)習(xí)時,小明與小亮、數(shù)學(xué)老師交流了自己的兩個見解,并得到了老師的認(rèn)可:
①可以假定正方形的邊長AB=4a,則AE=DE=2a,DF=a,利用“兩邊分別成比例且夾角相等的兩個三角形相似”可以證明△ABE∽△DEF;請結(jié)合提示寫出證明過程.
②圖中的相似三角形共三對,而且可以借助于△ABE與△DEF中的比例線段來證明△EBF與它們相似.證明過程如下:
(2)交流之后,小亮嘗試對問題進(jìn)行了變化,在老師的幫助下,提出了新的問題,請你解答:
已知:如圖,在矩形ABCD中,E為AD的中點,EF⊥EC交AB于F,連結(jié)FC.
(AB>AE)
![]()
①求證:△AEF∽△ECF;
②設(shè)BC=2,AB=a,是否存在a值,使得△AEF與△BFC相似.若存在,請求出a的值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,□
的頂點
的坐標(biāo)為
,
在第一象限反比例函數(shù)
和
的圖象分別經(jīng)過
兩點,延長
交
軸于點
. 設(shè)
是反比例函數(shù)
圖象上的動點,若
的面積是
面積的2倍,
的面積等于
,則
的值為________。
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=ax2+
x+c(a≠0)與x軸交于點A,B兩點,
其中A(-1,0),與y軸交于點C(0,2).
(1)求拋物線的表達(dá)式及點B坐標(biāo);
(2)點E是線段BC上的任意一點(點E與B、C不重合),過點E作平行于y軸的直線交拋物線于點F,交x軸于點G.
①設(shè)點E的橫坐標(biāo)為m,用含有m的代數(shù)式表示線段EF的長;
②線段EF長的最大值是 .
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC中,AC=BC,點D在BC上,作∠ADF=∠B,DF交外角∠ACE的平分線CF于點F.
![]()
(1)求證:CF∥AB;
(2)若∠CAD=20°,求∠CFD的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,且AB為⊙O的直徑,OD⊥AB,與AC交于點E,∠D=2∠A.
(1)求證:CD是⊙O的切線;
(2)求證:DE=DC;
(3)若OD=5,CD=3,求AC的長.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】某商店經(jīng)銷甲、乙兩種商品,現(xiàn)有如下信息:
信息1:甲商品的零售單價比乙商品的零售單價少1元;
信息2:按零售單價購買甲商品3件和乙商品2件,共付了12元.
請根據(jù)以上信息,解答下列問題:
(1)分別求甲、乙兩種商品的零售單價;
(2)該商店平均每天賣出甲、乙兩種商品各500件,經(jīng)調(diào)查發(fā)現(xiàn),兩種商品零售單價每降0.1元,甲種商品每天可多銷售30件,乙種商品每天可多銷售20件,商店決定把兩種商品的零售單價均下降m(0<m<1)元.在不考慮其他因素的條件下,當(dāng)m為多少時,商店每天銷售甲、乙兩種商品的銷售額之和為2500元?
查看答案和解析>>
科目: 來源: 題型:
【題目】張師傅駕駛某種型號轎車從甲地去乙地,該種型號轎車每百公里油耗為10升(每行駛100公里需消耗10升汽油).途中在加油站加了一次油,加油前,根據(jù)儀表盤顯示,油箱中還剩4升汽油.假設(shè)加油前轎車以80公里/小時的速度勻速行駛,加油后轎車以90公里/小時的速度勻速行駛(不計加油時間),已知油箱中剩余油量y(升)與行駛時間t(小時)之間的函數(shù)關(guān)系如圖所示.
(1) 加油前,該轎車每小時消耗汔油 升;加油后,該轎車每小時消耗汔油 升;
(2)求加油前油箱剩余油量y(升)與行駛時間t(小時)之間的函數(shù)表達(dá)式;
(3)求張師傅在加油站加了多少升汽油.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】春節(jié)期間,小明一家乘坐飛機(jī)前往某市旅游,計劃第二天租出租車自駕游.
公司 | 租車收費方式 |
甲 | 每日固定租金80元,另外每小時收費15 元. |
乙 | 無固定租金,直接以租車時間計費,每小時租費30元 |
(1)設(shè)租車時間為x小時
, 租用甲公司的車所需費用為
元,租用乙公司的車所需費用為
元,分別求出
與x之間的關(guān)系式:
(2)請你幫助小明計算并選擇哪個公司租車合算.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,MN為一電視塔,AB是坡角為30°的小山坡(電視塔的底部N與山坡的坡腳A在同一水平線上,被一個人工湖隔開),某數(shù)學(xué)興趣小組準(zhǔn)備測量這座電視塔的高度.在坡腳A處測得塔頂M的仰角為45°;沿著山坡向上行走40m到達(dá)C處,此時測得塔頂M的仰角為30°,請求出電視塔MN的高度.(參考數(shù)據(jù):
≈1.41,
≈1.73,結(jié)果保留整數(shù))
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,平行四邊形ABCD中,E為AB邊上一點,DE=DC,點F為線段DE上一點,滿足∠DFC=∠A,連結(jié)CE.
![]()
(1)求證:AD=FC;
(2)求證:CE是∠BCF的角平分線.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com