科目: 來源: 題型:
【題目】如圖,∠AOC與∠BOC互余,OD平分∠BOC,∠EOC=2∠AOE.
(1)若∠AOD=75°,求∠AOE的度數(shù).
(2)若∠DOE=54°,求∠EOC的度數(shù).
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知一次函數(shù)
的圖象分別交
軸、
軸于
、
兩點,點
從點
出發(fā)沿
方向以每秒
個單位長度的速度向點
勻速運動,同時點
從點
出發(fā)沿
方向以每秒2個單位長度向點
勻速運動,當其中一點到達終點時,另一點也停止運動,設(shè)運動時間為
秒,過點
作
軸,連接
、
.
![]()
(1)點
的坐標為________,點
的坐標為________,
________;
(2)四邊形
能夠成為菱形嗎?如果能,求出相應的值;如果不能,說明理由.
(3)若點
,點
在
軸上,直線
上是否存在點
,使以
、
、
、
為頂點的四邊形是平行四邊形?若存在,請直接寫出
點的坐標;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于平面直角坐標系xOy中的任意兩點M(x1,y1),N(x2,y2),給出如下定義:
將|x1﹣x2|稱為點M,N之間的“橫長”,|y1﹣y2|稱為點M,N之間的縱長”,點M與點N的“橫長”與“縱長”之和稱為“折線距離”,記作d(M,N)=|x1﹣x2|+|y1﹣y2|“.
例如:若點M(﹣1,1),點N(2,﹣2),則點M與點N的“折線距離”為:d(M,N)=|﹣1﹣2|+|1﹣(﹣2)|=3+3=6.
根據(jù)以上定義,解決下列問題:
已知點P(3,2).
(1)若點A(a,2),且d(P,A)=5,求a的值;
(2)已知點B(b,b),且d(P,B)<3,直接寫出b的取值范圍;
(3)若第一象限內(nèi)的點T與點P的“橫長”與“縱長”相等,且d(P,T)>5,簡要分析點T的橫坐標t的取值范圍.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】請仔細閱讀下面兩則材料,然后解決問題:
材料1:小學時我們學過,任何一個假分數(shù)都可以化為一個整數(shù)與一個真分數(shù)的和的形式,同樣道理,任何一個分子次數(shù)不低于分母次數(shù)的分式都可以化為一個整式與另一個分式的和(或差)的形式,其中分式的分子次數(shù)低于分母次數(shù).
如:
.
材料2:對于式子
,利用換元法,令
,
.則由于
,所以反比例函數(shù)
有最大值,且為3.因此分式
的最大值為5.
根據(jù)上述材料,解決下列問題:
(1)把分式
化為一個整式與另一個分式的和的形式,其中分式的分子次數(shù)低于分母次數(shù).
(2)當
的值變化時,求分式
的最大(或最。┲.
查看答案和解析>>
科目: 來源: 題型:
【題目】購物廣場內(nèi)甲、乙兩家商店對A、B兩種商品均有優(yōu)惠促銷活動;
甲商店的促銷方案是:A商品打八折,B商品打七五折;
乙商店的促銷方案是:購買一件A商品,贈送一件B商品,多買多送。
請你結(jié)合小明和小華的對話,解答下列問題:
![]()
(1)求A、B兩種商品促銷前的單價;
(2)假設(shè)在同一家商店購買A、B兩種商品共100件,且A不超過50件,請說明選擇哪家商店購買更合算。
查看答案和解析>>
科目: 來源: 題型:
【題目】為了滿足學生的物質(zhì)需求,我市某中學到紅旗超市準備購進甲、乙兩種綠色袋裝食品.其中甲、乙兩種綠色袋裝食品的進價和售價如下表:
甲 | 乙 | |
進價(元/袋) |
|
|
售價(元/袋) | 20 | 13 |
已知:用2000元購進甲種袋裝食品的數(shù)量與用1600元購進乙種袋裝食品的數(shù)量相同.
(1)求
的值;
(2)要使購進的甲、乙兩種綠色袋裝食品共800袋的總利潤(利潤=售價-進價)不少于5200元,且不超5280元,問該紅旗超市有幾種進貨方案?
(3)在(2)的條件下,該紅旗超市準備對甲種袋裝食品進行優(yōu)惠促銷活動,決定對甲種袋裝食品每袋優(yōu)惠
元出售,乙種袋裝食品價格不變.那么該紅旗超市要獲得最大利潤應如何進貨?
查看答案和解析>>
科目: 來源: 題型:
【題目】為營造“安全出行”的良好交通氛圍,實時監(jiān)控道路交迸,某市交管部門在路口安裝的高清攝像頭如圖所示,立桿MA與地面AB垂直,斜拉桿CD與AM交于點C,橫桿DE∥AB,攝像頭EF⊥DE于點E,AC=55米,CD=3米,EF=0.4米,∠CDE=162°。
![]()
(1)求∠MCD的度數(shù);
(2)求攝像頭下端點F到地面AB的距離。(精確到百分位)
(參考數(shù)據(jù);sin72°=0.95,cos72°≈0.31,tan72°=3.08,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)
查看答案和解析>>
科目: 來源: 題型:
【題目】為深化課改,落實立德樹人目標,某學校設(shè)置了以下四門拓展性課程:A.數(shù)學思維,B.文學鑒賞,C.紅船課程,D.3D打印,規(guī)定每位學生選報一門.為了解學生的報名情況,隨機抽取了部分學生進行調(diào)查,并制作成如下兩幅不完整的統(tǒng)計圖,請回答下列問題:
![]()
(1)求這次被調(diào)查的學生人數(shù);
(2)請將條形統(tǒng)計圖補充完整;
(3)假如全校有學生1000人,請估計選報“紅船課程”的學生人數(shù).
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com