科目: 來源: 題型:
【題目】如圖,拋物線
與
軸交于A、B兩點,與y軸交于點C(0,3),且此拋物線的頂點坐標為M(-1,4).
(1)求此拋物線的解析式;
(2)設(shè)點D為已知拋物線對稱軸上的任意一點,當(dāng)△ACD面積等于6時,求點D的坐標;
(3)點P在線段AM上,當(dāng)PC與y軸垂直時,過點P作
軸的垂線,垂足為E,將△PCE沿直線CB翻折,使點P的對應(yīng)點P'與P、E、C處在同一平面內(nèi),請求出P'坐標,并判斷點P'是否在拋物線上.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】為推廣陽光體育“大課間”活動,我市某中學(xué)決定在學(xué)生中開設(shè)A:實心球,B:立定跳遠,C:跳繩,D:跑步四種活動項目.為了了解學(xué)生對四種項目的喜歡情況,隨機抽取了部分學(xué)生進行調(diào)查,并將調(diào)查結(jié)果繪制成如圖①②的統(tǒng)計圖.請結(jié)合圖中的信息解答下列問題:
(1)在這項調(diào)查中,共調(diào)查了多少名學(xué)生?
(2)請計算本項調(diào)查中喜歡“立定跳遠”的學(xué)生人數(shù)和所占百分比,并將兩個統(tǒng)計圖補充完整;
(3)若調(diào)查到喜歡“跳繩”的5名學(xué)生中有3名男生,2名女生.現(xiàn)從這5名學(xué)生中任意抽取2名學(xué)生.請用畫樹狀圖或列表的方法,求出剛好抽到同性別學(xué)生的概率.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】實驗室里,水平桌面上有甲、乙、丙三個圓柱形容器(容器足夠高),底面半徑之比為1:2:1,,用兩個相同的管子在容器的5cm高度處連通(即管子底端離容器底5cm),現(xiàn)三個容器中,只有甲中有水,水位高1cm,如圖所示.若每分鐘同時向乙和丙注入相同量的水,開始注水1分鐘,乙的水位上升
cm,則開始注入 分鐘的水量后,甲與乙的水位高度之差是0.5cm.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在邊長為6的正方形ABCD中,E是邊CD的中點,將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG.
(1)求證:△ABG≌△AFG;(2)求BG的長.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】碼頭工人往一艘輪船上裝載貨物,裝完貨物所需時間![]()
與裝載速度
之間的函數(shù)關(guān)系如圖.
(1)這批貨物的質(zhì)量是多少?并求出
與
之間的函數(shù)關(guān)系式;
(2)輪船到達目的地后開始卸貨,如果以5t/min的速度卸貨,那么需要多少小時才能卸完貨?
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如果關(guān)于x的一元二次方程ax2+bx+c=0有兩個實根,且其中一個根為另一根的2倍,則稱這樣的方程為“倍根方”,以下關(guān)于倍根方程的說法正確的是______(填正確序號)
①方程x2﹣x﹣2=0是倍根方程.
②若(x﹣2)(mx+n)=0是倍根方程,則4m2+5mn+n2=0.
③若點(p,q)在反比例函數(shù)y=
的圖象上,則關(guān)于x的方程px2+3x+q=0是倍根方程.
④若方程ax2+bx+c=0是倍根方程且相異兩點M(1+t,s)、N(4﹣t,s)都在拋物線y=ax2+bx+c上,則方程ax2+bx+c=0必有一個根為
.
查看答案和解析>>
科目: 來源: 題型:
【題目】如表是某校七~九年級某月課外興趣小組活動時間統(tǒng)計表,其中各年級同一興趣小組每次活動時間相同.
課外小組活動總時間/h | 文藝小組活動次數(shù) | 科技小組活動次數(shù) | |
七年級 | 12.5 | 4 | 3 |
八年級 | 10.5 | 3 | 3 |
九年級 | 7 | ☆ | ☆ |
則九年級文藝小組活動次數(shù)和科技小組活動次數(shù)(表中的兩個五星)分別是( )
A.2,2B.1,3C.3,1D.1,2
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在RtΔABC中,∠ABC=90°,AB=CB,以AB為直徑的⊙O交AC于點D,點E是AB邊上一點(點E不與點A、B重合),DE的延長線交⊙O于點G,DF⊥DG,且交BC于點F.
(1)求證:AE=BF;
(2)連接EF,求證:∠FEB=∠GDA;
(3)連接GF,若AE=2,EB=4,求ΔGFD的面積.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,已知數(shù)軸上有三點A,B,C.點A,C對應(yīng)的數(shù)分別是-40和20,點B是AC的中點.
![]()
(1)請直接寫出點B對應(yīng)的數(shù): ;
(2)如圖2,動點P,Q分別從A,C兩點同時出發(fā)向左運動,點P,Q的速度分別為2個單位長度/秒,3個單位長度/秒,點E為線段PQ的中點.設(shè)運動的時間為t秒(t > 0).
①當(dāng)t為何值時,點B與點E的距離是5個單位長度?
②當(dāng)點E在點A的右側(cè)時,mAE+QC的值不隨時間的變化而改變,請求出m的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在某筆直路段MN內(nèi)小車行駛的最高限速60千米/小時.交通部門為了檢測車輛是否在此路段超速行駛,在公路MN旁設(shè)立了觀測點C,已知∠CAN=45°,∠CBN=60°,BC=120米.
(1)求測速點C到該公路的距離;
(2)若測得一小車從A點到達點B行駛了3秒,請通過計算判斷此車是否超速.(參考數(shù)據(jù):
,
)
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com