科目: 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,BC的垂直平分線DE交BC于D,交AB于E,F在DE上,并且AF=CE.
![]()
(1)求證:四邊形ACEF是平行四邊形;
(2)當(dāng)∠B的大小滿足什么條件時(shí),四邊形ACEF是菱形?請(qǐng)回答并證明你的結(jié)論;
(3)四邊形ACEF有可能是正方形嗎?為什么?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知
,直線
分別與
、
交于點(diǎn)
、點(diǎn)
.
(1)如圖1,當(dāng)點(diǎn)
在線段
上,若
,
,則
__________°;
![]()
(2)如圖2,當(dāng)點(diǎn)
在線段
的延長(zhǎng)線上,
與
交于點(diǎn)
,則
、
、
之間滿足怎樣的關(guān)系,請(qǐng)證明你的結(jié)論;
![]()
(3)如圖3,在(2)的條件下,
平分
,交
于點(diǎn)
,射線
將
分成
,且與
交于點(diǎn)
,若
,
,求
的度數(shù).
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】某校計(jì)劃組織師生共300人參加一次大型公益活動(dòng),如果租用6輛大客車和5輛小客車,恰好全部坐滿,已知每輛大客車的乘客座位數(shù)比小客車多17個(gè).
(1)求每輛大客車和每輛小客車的乘客座位數(shù);
(2)由于最后參加活動(dòng)的人數(shù)增加了30人,學(xué)校決定調(diào)整租車方案,在保持租用車輛總數(shù)不變的情況下,且所有參加活動(dòng)的師生都有座位,求租用小客車數(shù)量的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,長(zhǎng)方體紙箱的長(zhǎng)、寬、高分別為50cm、30cm、60cm,一只螞蟻從點(diǎn)A處沿著紙箱的表面爬到點(diǎn)B處.螞蟻爬行的最短路程為_______cm.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】尺規(guī)作圖:某學(xué)校正在進(jìn)行校園環(huán)境的改造工程設(shè)計(jì),準(zhǔn)備在校內(nèi)一塊四邊形花壇內(nèi)栽上一棵桂花樹.如圖,要求桂花樹的位置(視為點(diǎn)P),到花壇的兩邊AB、BC的距離相等,并且點(diǎn)P到點(diǎn)A、D的距離也相等.請(qǐng)用尺規(guī)作圖作出栽種桂花樹的位置點(diǎn)P(不寫作法,保留作圖痕跡).
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,A、B、C、P四點(diǎn)均在邊長(zhǎng)為1的小正方形網(wǎng)格格點(diǎn)上.
![]()
(1)判斷△PBA與△ABC是否相似,并說明理由;
(2)求∠BAC的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】(本題滿分10分)如圖,在四邊形ABCD中,AD∥BC,點(diǎn)E在BC的延長(zhǎng)線上,CE=BC,連接AE,交CD邊于點(diǎn)F,且CF=DF.(1)求證:AD=BC;(2)連接BD、DE,若BD⊥DE,求證:四邊形ABCD為菱形.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE平分∠BAD,交BC于點(diǎn)E,且AB=AE,延長(zhǎng)AB與DE的延長(zhǎng)線交于點(diǎn)F.下列結(jié)論中:①△ABC≌△EAD;②△ABE是等邊三角形;③AD=AF;④S△ABE=S△CEF其中正確的是( 。
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,O為△ABC的三條角平分線的交點(diǎn),OD⊥BC,OE⊥AC,OF⊥AB,點(diǎn)D、E、F分別是垂足,且BC=8cm,CA=6cm,則點(diǎn)O到邊AB的距離為( )
![]()
A. 2cm B. 3cm C. 4cm D. 5cm
查看答案和解析>>
科目: 來源: 題型:
【題目】請(qǐng)從以下四個(gè)一元二次方程中任選三個(gè),并用適當(dāng)?shù)姆椒ń膺@三個(gè)方程.
(1)x2﹣x﹣1=0;
(2)(y﹣2)2﹣12=0;
(3)(1+m)2=m+1;
(4)t2﹣4t=5.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com