科目: 來源: 題型:
【題目】某“希望學校”修建了一棟4層的教學大樓,每層樓有6間教室,進出這棟大樓共有3道門(兩道大小相同的正門和一道側門).安全檢查中,對這3道門進行了測試:當同時開啟一道正門和一道側門時,2分鐘內可以通過400名學生,若一道正門平均每分鐘比一道側門可多通過40名學生.
(1)求平均每分鐘一道正門和一道側門各可以通過多少名學生?
(2)檢查中發(fā)現,緊急情況時因學生擁擠,出門的效率降低20%.安全檢查規(guī)定:在緊急情況下全大樓的學生應在5分鐘內通過這3道門安全撤離.假設這棟教學大樓每間教室最多有45名學生,問:建造的這3道門是否符合安全規(guī)定?為什么?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC是⊙O的內接三角形,AB=AC,∠ABC的平分線BE交⊙O于點E,∠ACB的平分線CF交⊙O于點F,BE和CF相交于點D,四邊形AFDE是菱形嗎?請證明你的結論.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】已知: A 0,1 , B 2, 0 , C 4, 3 .
(1)求△ABC 的面積;
(2)設點 P 在坐標軸上,且△ABC 和△ABP 的面積相等,直接寫出 P 的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點D是AB邊上一點,DE⊥AB,且DE=AC,DE與AC交于點G,過點E作FE∥BC交AB于點F,交AC于點H.
(1)求證:△ABC≌△EFD;
(2)若∠EFD=55°,求∠DGH的度數.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,線段AB與⊙O相切于點C,連接OA,OB,OB交⊙O于點D.已知OA=OB=6 cm,AB=6
cm.
(1)求⊙O的半徑;
(2)求圖中陰影部分的面積.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點P在y軸上,⊙P交x軸于A,B兩點,連接BP并延長交⊙P于點C,過點C的直線y=2x+b交x軸于點D,且⊙P的半徑為
,AB=4.
(1)求點B,P,C的坐標;
(2)求證:CD是⊙P的切線.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】在⊙O中,直徑AB=6,BC是弦,∠ABC=30°,點P在BC上,點Q在⊙O上,且OP⊥PQ.
![]()
(1)如圖1,當PQ∥AB時,求PQ的長度;
(2)如圖2,當點P在BC上移動時,求PQ長的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方形網格中的每個小正方形的邊長都是1,每個小正方形的頂點叫做格點.△ABC的三個頂點A,B,C都在格點上.將△ABC繞點A按順時針方向旋轉90°得到△AB′C′.
![]()
(1)在正方形網格中,畫出△AB′C′;
(2)計算線段AB在變換到AB′的過程中掃過的區(qū)域的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】 如圖,AB是⊙O的直徑,P為AB延長線上的一個動點,過點P作⊙O的切線,切點為C,連接AC,BC,作∠APC的平分線交AC于點D.
![]()
下列結論正確的是 (寫出所有正確結論的序號)
①△CPD∽△DPA;
②若∠A=30°,則PC=
BC;
③若∠CPA=30°,則PB=OB;
④無論點P在AB延長線上的位置如何變化,∠CDP為定值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com