科目: 來源: 題型:
【題目】如圖,在矩形
中,
平分
交
于點(diǎn)
,給出以下結(jié)論:①
為等腰直角三角形;②
為等邊三角形;③
;④
⑤
是
的中位線.其中正確的結(jié)論有( )
![]()
A.
個(gè)B.
個(gè)C.
個(gè)D.
個(gè)
查看答案和解析>>
科目: 來源: 題型:
【題目】我們知道,任意一個(gè)正整數(shù)
都可以進(jìn)行這樣的分解:
(
是正整數(shù),且
),在
的所有這種分解中,如果
兩因數(shù)之差的絕對(duì)值最小,我們就稱
是
的最佳分解并規(guī)定:
,例如:12可以分解成1×12、2×6、3×4,因?yàn)椋?/span>
,所以3×4是12的最佳分解,所以F(12)=![]()
(1)求F(18)-F(16)的值;
(2)若正整數(shù)
是4的倍數(shù),我們稱正整數(shù)
為“四季數(shù)”,如果一個(gè)兩位正整數(shù)![]()
(
,
為自然數(shù)),交換個(gè)位上的數(shù)字與十位上的數(shù)字得到的新兩位正整數(shù)減去原來的兩位正整數(shù)所得的差為“四季數(shù)”,那么我們稱這個(gè)數(shù)
為“有緣數(shù)”,求所有“有緣數(shù)”中
的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某工廠計(jì)劃生產(chǎn)A、B兩種產(chǎn)品共50件,需購買甲、乙兩種材料.生產(chǎn)一件A產(chǎn)品需甲種材料30千克、乙種材料10千克;生產(chǎn)一件B產(chǎn)品需甲、乙兩種材料各20千克.經(jīng)測(cè)算,購買甲、乙兩種材料各1千克共需資金40元,購買甲種材料2千克和乙種材料3千克共需資金105元.
(1)甲、乙兩種材料每千克分別是多少元?
(2)現(xiàn)工廠用于購買甲、乙兩種材料的資金不超過38000元,且生產(chǎn)B產(chǎn)品不少于28件,問符合條件的生產(chǎn)方案有哪幾種?
(3)在(2)的條件下,若生產(chǎn)一件A產(chǎn)品需加工費(fèi)200元,生產(chǎn)一件B產(chǎn)品需加工費(fèi)300元,應(yīng)選擇哪種生產(chǎn)方案,使生產(chǎn)這50件產(chǎn)品的成本最低?(成本=材料費(fèi)+加工費(fèi))
查看答案和解析>>
科目: 來源: 題型:
【題目】下列命題,原命題和它的逆命題都是真命題的是( )
A.若
,則![]()
B.若三角形的三條邊分別為
,則這個(gè)三角形是直角三角形
C.正方形的四條邊都相等
D.對(duì)角線互相垂直平分的四邊形是菱形
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀與計(jì)算:請(qǐng)閱讀以下材料,并完成相應(yīng)的任務(wù). 古希臘的幾何學(xué)家海倫在他的《度量》一書中給出了利用三角形的三邊求三角形面積的“海倫公式”:如果一個(gè)三角形的三邊長(zhǎng)分別為a、b、c,設(shè)p=
,則三角形的面積S=
.
我國(guó)南宋著名的數(shù)學(xué)家秦九韶,曾提出利用三角形的三邊求面積的“秦九韶公式”(三斜求積術(shù)):如果一個(gè)三角形的三邊長(zhǎng)分別為a、b、c,則三角形的面積S=
.
(1)若一個(gè)三角形的三邊長(zhǎng)分別是5,6,7,則這個(gè)三角形的面積等于 .
(2)若一個(gè)三角形的三邊長(zhǎng)分別是
,求這個(gè)三角形的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】類比思想就是根據(jù)已經(jīng)學(xué)習(xí)過的知識(shí),類比探究新知識(shí)的思想方法.我們?cè)谔骄烤匦、菱形、正方形等問題中的數(shù)量關(guān)系時(shí),經(jīng)常用到類比思想.某數(shù)學(xué)興趣小組在數(shù)學(xué)課外活動(dòng)中,研究三角形和正方形的性質(zhì)時(shí),做了如下探究:在
中,
點(diǎn)
為直線
上一動(dòng)點(diǎn)(點(diǎn)
不與
重合),以
為邊在
右側(cè)作正方形
連接
.
(1)(觀察猜想)如圖①,當(dāng)點(diǎn)
在線段
上時(shí);
①
與
的位置關(guān)系為: ;
②
之間的數(shù)量關(guān)系為: ;(將結(jié)論直接寫在橫線上)
(2)(數(shù)學(xué)思考)如圖②,當(dāng)點(diǎn)
在線段
的延長(zhǎng)線上時(shí),結(jié)論①②是否仍然成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)你寫出正確結(jié)論再給予證明;
(3)(拓展延伸)如圖③,當(dāng)點(diǎn)
在線段
的延長(zhǎng)線上時(shí),延長(zhǎng)
交
于點(diǎn)
,連接
.若已知
請(qǐng)直接寫出
的長(zhǎng).(提示: .過
作
于
過
作
于
于
)
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】雙峰縣教育局要求各學(xué)校加強(qiáng)對(duì)學(xué)生的安全教育,全縣各中小學(xué)校引起高度重視,小剛就本班同學(xué)對(duì)安全知識(shí)的了解程度進(jìn)行了一次調(diào)查統(tǒng)計(jì).他將統(tǒng)計(jì)結(jié)果分為三類,A:熟悉;B:了解較多;C:一般了解。圖①和圖②是他采集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息解答以下問題:
(1)求小剛所在的班級(jí)共有多少名學(xué)生;
(2)在條形圖中,將表示“一般了解”的部分補(bǔ)充完整‘’
(3)在扇形統(tǒng)計(jì)圖中,計(jì)算“了解較多”部分所對(duì)應(yīng)的扇形圓心角的度數(shù);
(4)如果小剛所在年級(jí)共1000名同學(xué),請(qǐng)你估算全年級(jí)對(duì)安全知識(shí)“了解較多”的學(xué)生人數(shù).
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖①,在
中,
,過
上一點(diǎn)
作
交
于點(diǎn)
,以
為頂點(diǎn),
為一邊,作
,另一邊
交
于點(diǎn)
.
![]()
(1)求證:四邊形
為平行四邊形;
(2)當(dāng)點(diǎn)
為
中點(diǎn)時(shí),
的形狀為 ;
(3)延長(zhǎng)圖①中的
到點(diǎn)
使
連接
得到圖②,若
判斷四邊形
的形狀,并說明理由.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com