科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上, 點(diǎn)A的坐標(biāo)為(2,4).
(1)畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1,并寫出點(diǎn)A的對(duì)應(yīng)點(diǎn)坐標(biāo)A1 .
(2)畫出△A1B1C1繞原點(diǎn)O旋轉(zhuǎn)180°后得到的△A2B2C2,并寫出點(diǎn)A2的坐標(biāo)A2 .
(3)設(shè)BC邊上的高AD,則AD= .
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】為了提高學(xué)生漢字書寫的能力,增強(qiáng)保護(hù)漢字的意識(shí),某校舉辦了首屆“漢字聽寫大賽”,學(xué)生經(jīng)選拔后進(jìn)入決賽,測試方法是:聽寫100個(gè)漢字,每正確聽寫出一個(gè)漢字得1分,本次決賽,學(xué)生成績?yōu)閤(分),且50≤x<100,將其按分?jǐn)?shù)段分為五組,繪制出以下不完整表格:
組別 | 成績x(分) | 頻數(shù)(人數(shù)) | 頻率 |
一 | 50≤x<60 | 2 | 0.04 |
二 | 60≤x<70 | 10 | 0.2 |
三 | 70≤x<80 | 14 | b |
四 | 80≤x<90 | a | 0.32 |
五 | 90≤x<100 | 8 | 0.16 |
請(qǐng)根據(jù)表格提供的信息,解答以下問題:![]()
(1)直接寫出表中a= , b=;
(2)請(qǐng)補(bǔ)全右面相應(yīng)的頻數(shù)分布直方圖;
(3)若決賽成績不低于80分為優(yōu)秀,則本次大賽的優(yōu)秀率為 .
(4)請(qǐng)根據(jù)得到的統(tǒng)計(jì)數(shù)據(jù),簡要分析這些同學(xué)的漢字書寫能力,并為提高同學(xué)們的書寫漢字能力提一條建議(所提建議不超過20字)
查看答案和解析>>
科目: 來源: 題型:
【題目】綜合題化簡及計(jì)算
(1)化簡:
﹣ ![]()
(2)關(guān)于x的一元二次方程kx2﹣2x+3=0有兩個(gè)不相等的實(shí)數(shù)根.求:k的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖是由一些棱長為1的小立方塊所搭幾何體的三種視圖.若在所搭幾何體的基礎(chǔ)上(不改變?cè)瓗缀误w中小立方塊的位置),繼續(xù)添加相同的小立方塊,以搭成一個(gè)長方體,至少還需要個(gè)小立方塊.最終搭成的長方體的表面積是 . ![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,從點(diǎn)P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),…依次擴(kuò)展下去,則P2020的坐標(biāo)為_____.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】任選一題作答,只計(jì)一題的成績:
a.如圖,在
的正方形網(wǎng)格中,點(diǎn)
,
,
,
,
,
都在格點(diǎn)上.連接點(diǎn)
,
得線段
.
![]()
(1)畫出過
,
,
,
中的任意兩點(diǎn)的直線;
(2)互相平行的直線(線段)有 ;(請(qǐng)用“
”表示)
(3)互相垂直的直線(線段)有 .
(請(qǐng)用“
”表示)
b.如圖,直線
和
相交于
,
,
是
的角平分線,
,求
的度數(shù).
其中一種解題過程如下,請(qǐng)?jiān)诶ㄌ?hào)中注明根據(jù),在橫線上補(bǔ)全步驟.
解:![]()
![]()
![]()
![]()
是
的角平分線
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方形ABCD中,AC為對(duì)角線,E為AB上一點(diǎn),過點(diǎn)E作EF∥AD,與AC,DC分別交于點(diǎn)G,F(xiàn),H為CG的中點(diǎn),連接DE,EH,DH,F(xiàn)H.下列結(jié)論中結(jié)論正確的有( )
①EG=DF;
②∠AEH+∠ADH=180°;
③△EHF≌△DHC;
④若
=
,則S△EDH=13S△CFH . ![]()
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目: 來源: 題型:
【題目】按要求完成下列推理證明.
如圖,已知點(diǎn)D為BC延長線上一點(diǎn),CE∥AB.
求證:∠A+∠B+∠ACB=180°
![]()
證明:∵CE∥AB,
∴∠1= ,( )
∠2= ,( )
又∠1+∠2+∠ACB=180°(平角的定義),
∴∠A+∠B+∠ACB=180°
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com