科目: 來源: 題型:
【題目】潼南綠色無公害蔬菜基地有甲、乙兩種植戶,他們種植了A、B兩類蔬菜,兩種植戶種植的兩類蔬菜的種植面積與總收入如下表:
種植戶 | 種植A類蔬菜面積 (單位:畝) | 種植B類蔬菜面積 (單位:畝) | 總收入 (單位:元) |
甲 | 3 | 1 | 12500 |
乙 | 2 | 3 | 16500 |
說明:不同種植戶種植的同類蔬菜每畝平均收入相等.
(1)求A、B兩類蔬菜每畝平均收入各是多少元?
(2)某種植戶準備租20畝地用來種植A、B兩類蔬菜,為了使總收入不低于63000元,且種植A類蔬菜的面積多于種植B類蔬菜的面積(兩類蔬菜的種植面積均為整數(shù)),求該種植戶所有租地方案.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知拋物線y=mx2﹣6mx+5m與x軸交于A、B兩點,以AB為直徑的⊙P經過該拋物線的頂點C,直線l∥ x軸,交該拋物線于M、N兩點,交⊙ P與E、F兩點,若EF=2
,則MN的長是 . ![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】小明在超市幫媽媽買回一袋紙杯,他把紙杯整齊地疊放在一起,如圖請你根據(jù)圖中的信息,若小明把100個紙杯整齊疊放在一起時,它的高度約是( )
![]()
A.106cmB.110cmC.114cmD.116cm
查看答案和解析>>
科目: 來源: 題型:
【題目】如果三角形有一邊上的中線恰好等于這邊的長,那么我們稱這個三角形為“美麗三角形”,
(1)如圖△ABC中,AB=AC=
,BC=2,求證:△ABC是“美麗三角形”;
(2)在Rt△ABC中,∠C=90°,AC=2
,若△ABC是“美麗三角形”,求BC的長.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l1的解析式為y=-x,直線l2與l1交于點A(a,-a),與y軸交于點B(0,b),其中a,b滿足(a+3)2+
=0.
(1)求直線l2的解析式;
(2)在平面直角坐標系中第二象限有一點P(m,5),使得S△AOP=S△AOB,請求出點P的坐標;
(3)已知平行于y軸左側有一動直線,分別與l1,l2交于點M、N,且點M在點N的下方,點Q為y軸上一動點,且△MNQ為等腰直角三角形,請求出滿足條件的點Q的坐標.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,每個小方格都是邊長為1個單位長度的正方形,在建立平面直角坐標系后,四邊形ABCD四個頂點的坐標分別為A(-2,0),B(-1,2),C(3,3),D(4, 0).
(1)畫出四邊形ABCD;
(2)把四邊形ABCD向下平移4個單位長度,再向左平移2個單位長度得到四邊形A′B′C′D′,畫出四邊形A′B′C′D′,并寫出C′的坐標。
(3)求出四邊形ABCD的面積。
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,E點為DF上的點,B為AC上的點,∠1=∠2,∠C=∠D.
試說明:AC∥DF.
![]()
證明:∵∠1=∠2(已知)
∠1=∠3,∠2=∠4( )
∴∠3=∠4( )
∴ ∥ ( )
∴∠C=∠ABD( )
又∵∠C=∠D(已知 )
∴∠D=∠ABD(等量代換)
∴AC∥DF( )
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為2,以點A為圓心,1為半徑作圓,E是⊙A上的任意一點,將點E繞點D按逆時針方向轉轉90°得到點F,則線段AF的長的最小值 . ![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AC=BC=25,AB=30,D是AB上的一點(不與A、B重合),DE⊥BC,垂足是點E,設BD=x,四邊形ACED的周長為y,則下列圖象能大致反映y與x之間的函數(shù)關系的是( )![]()
A.
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,對于點P(x,y),我們把點
(-y+1,x+1)叫做點P伴隨點.已知點A1的伴隨點為A2,點A2的伴隨點為A3,點A3的伴隨點為A4,…,這樣依次得到點A1,A2,A3,…,An,….若點A1的坐標為(2,4),點A2017的坐標為 ( )
A. (-3,3) B. (-2,-2) C. (3,-1) D. (2,4)
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com