科目: 來源: 題型:
【題目】已知:如圖,點P在線段AB外,且PA=PB,求證:點P在線段AB的垂直平分線上,在證明該結(jié)論時,需添加輔助線,則作法不正確的是( 。
![]()
A. 作∠APB的平分線PC交AB于點C
B. 過點P作PC⊥AB于點C且AC=BC
C. 取AB中點C,連接PC
D. 過點P作PC⊥AB,垂足為C
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC是邊長為4cm的等邊三角形,動點P從點A出發(fā),以2cm/s的速度沿A→C→B運動,到達B點即停止運動,過點P作PD⊥AB于點D,設(shè)運動時間為x(s),△ADP的面積為y(cm2),則能夠反映y與x之間函數(shù)關(guān)系的圖象大致是( )![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】若m為任意實數(shù),點 P(3 m,m 1) ,則下列說法正確的個數(shù)有( )個
①若點P在第二象限,則m的取值范圍是m 3
②因為m為任意實數(shù),所以點P可能在平面內(nèi)任意位置
③無論m取何值,點P都是某條定直線上的點
④當(dāng)m變化時,點P的位置也在變化,所以在平面內(nèi)無法確定與原點距離最近的點P的位置
A.1B.2C.3D.4
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在等腰Rt△ABC中,AC=BC=2
,點P在以斜邊AB為直徑的半圓上,M為PC的中點.當(dāng)點P沿半圓從點A運動至點B時,點M運動的路徑長是( )![]()
A.
π
B.π
C.2 ![]()
D.2
查看答案和解析>>
科目: 來源: 題型:
【題目】小明同學(xué)在學(xué)習(xí)了全等三角形的相關(guān)知識后發(fā)現(xiàn),只用兩把完全相同的長方形直尺就可以作出一個角的平分線.如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點P,小明說:“射線OP就是∠BOA的角平分線.”他這樣做的依據(jù)是( )
![]()
A. 角的內(nèi)部到角的兩邊的距離相等的點在角的平分線上
B. 角平分線上的點到這個角兩邊的距離相等
C. 三角形三條角平分線的交點到三條邊的距離相等
D. 以上均不正確
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線y=﹣
x+1與x軸交于點A,與y軸交于點B,拋物線y=﹣x2+bx+c經(jīng)過A,B兩點.![]()
(1)求拋物線的解析式;
(2)點P是第一象限拋物線上的一點,連接PA、PB、PO,若△POA的面積是△POB面積的
倍.
①求點P的坐標(biāo);
②點Q為拋物線對稱軸上一點,請直接寫出QP+QA的最小值;
(3)點M為直線AB上的動點,點N為拋物線上的動點,當(dāng)以點O、B、M、N為頂點的四邊形是平行四邊形時,請直接寫出點M的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,分別過B,C向經(jīng)過點A的直線EF作垂線,垂足為E,F.
![]()
(1)如圖1,當(dāng)EF與斜邊BC不相交時,請證明EF=BE+CF;
(2)如圖2,當(dāng)EF與斜邊BC相交時,其他條件不變,寫出EF、BE、CF之間的數(shù)量關(guān)系,并說明理由;
(3)如圖3,猜想EF、BE、CF之間又存在怎樣的數(shù)量關(guān)系,寫出猜想,不必說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知∠DAE=∠B,∠DAB=∠C,則下列結(jié)論不成立的是( )
![]()
A.AD∥BCB.AB∥CDC.∠DAB+∠B=180°D.∠B=∠C
查看答案和解析>>
科目: 來源: 題型:
【題目】某一出租車一天下午以鼓樓為出發(fā)點在東西方向運營,向東走為正,向西走為負,行車?yán)锍蹋▎挝唬?/span>km)依先后次序記錄如下:
.
(1)將最后一名乘客送到目的地,出租車離鼓樓出發(fā)點多遠?在鼓樓的什么方向?
(2)若每千米的價格為2.4元,司機一個下午的營業(yè)額是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點D是△ABC邊BC上一點,AD=BD,且AD平分∠BAC.(1)若∠B=50°,求∠ADC的度數(shù);(2)若∠C=30°,求∠ADC的度數(shù).
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com