科目: 來(lái)源: 題型:
【題目】已知一次函數(shù)y1=﹣2x﹣3與y2=
x+2.
(1)在同一平面直角坐標(biāo)系中,畫(huà)出這兩個(gè)函數(shù)的圖象;
(2)根據(jù)圖象,不等式﹣2x﹣3>
x+2的解集為多少?
(3)求兩圖象和y軸圍成的三角形的面積.
![]()
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知:如圖,四邊形ABCD是平行四邊形,AE∥CF,且分別交對(duì)角線BD于點(diǎn)E,F.
(1)求證:△AEB≌△CFD;
(2)連接AF,CE,若∠AFE=∠CFE,求證:四邊形AFCE是菱形.
![]()
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知:E是∠AOB的平分線上一點(diǎn),EC⊥OA ,ED⊥OB ,垂足分別為C、D求證:(1)△OED≌△OEC (2)∠ECD=∠EDC
![]()
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么關(guān)于此二次函數(shù)的下列四個(gè)結(jié)論:①a+b+c<0;②c>1;③b2﹣4ac>0;④2a﹣b<0,其中正確的結(jié)論有( )![]()
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知:在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別是(a,0),(b,0)且
+|b-2|=0.
(1)求a、b的值;
(2)在y軸上是否存在點(diǎn)C,使三角形ABC的面積是12?若存在,求出點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)已知點(diǎn)P是y軸正半軸上一點(diǎn),且到x軸的距離為3,若點(diǎn)P沿平行于x軸的負(fù)半軸方向以每秒1個(gè)單位長(zhǎng)度平移至點(diǎn)Q,當(dāng)運(yùn)動(dòng)時(shí)間t為多少秒時(shí),四邊形ABPQ的面積S為15個(gè)平方單位?寫(xiě)出此時(shí)點(diǎn)Q的坐標(biāo). ![]()
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知△ABC為邊長(zhǎng)為6的等邊三角形,D,E分別在邊BC,AC上,且CD=CE=x,連接DE并延長(zhǎng)至點(diǎn)F,使EF=AE,連接AF,CF.![]()
(1)求證:△AEF為等邊三角形;
(2)求證:四邊形ABDF是平行四邊形;
(3)記△CEF的面積為S,
①求S與x的函數(shù)關(guān)系式;
②當(dāng)S有最大值時(shí),判斷CF與BC的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系
中,點(diǎn)
,點(diǎn)
是
軸上兩點(diǎn),其中
,點(diǎn)
都在
軸上,
在射線
上(不與點(diǎn)
重合),
,連結(jié)
.
(1)求
、
的坐標(biāo);
(2)如圖
,若
在
軸正半軸,
在線段
上,當(dāng)
時(shí),求證:
為等邊三角形;(提示:連結(jié)
)
(3)當(dāng)
時(shí),在圖
中畫(huà)出示意圖,設(shè)
,若
,求
的值.
![]()
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在
中,
,點(diǎn)
在
內(nèi),
,
,點(diǎn)
在
外,
,
.
(1)求
的度數(shù);
(2)判斷
的形狀并加以證明;
(3)連接
,若
,
,求
的長(zhǎng).
![]()
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】心理學(xué)家研究發(fā)現(xiàn),一般情況下,一節(jié)課40分鐘中,學(xué)生的注意力隨教師講課的變化而變化.開(kāi)始上課時(shí),學(xué)生的注意力逐步增強(qiáng),中間有一段時(shí)間學(xué)生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學(xué)生的注意力開(kāi)始分散.經(jīng)過(guò)實(shí)驗(yàn)分析可知,學(xué)生的注意力指數(shù)y隨時(shí)間x(分鐘)的變化規(guī)律如下圖所示(其中AB、BC分別為線段,CD為雙曲線的一部分):![]()
(1)求出線段AB,曲線CD的解析式,并寫(xiě)出自變量的取值范圍;
(2)開(kāi)始上課后第五分鐘時(shí)與第三十分鐘時(shí)相比較,何時(shí)學(xué)生的注意力更集中?
(3)一道數(shù)學(xué)競(jìng)賽題,需要講19分鐘,為了效果較好,要求學(xué)生的注意力指數(shù)最低達(dá)到36,那么經(jīng)過(guò)適當(dāng)安排,老師能否在學(xué)生注意力達(dá)到所需的狀態(tài)下講解完這道題目?
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com