科目: 來源: 題型:
【題目】如圖,在正方形ABCD中,△ABE和△CDF為直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,則EF的長是( ) ![]()
A.7
B.8
C.7 ![]()
D.7 ![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,BD是∠ABC的平分線,ED∥BC,∠4=∠5,則EF也是∠AED的平分線.完成下列推理過程:
證明:∵BD是∠ABC的平分線(已知)
∴∠1=∠2(角平分線定義)
∵ED∥BC(已知)
∴∠5=∠2( )
∴∠1=∠5(等量代換)
∵∠4=∠5(已知)
∴EF∥ ( )
∴∠3=∠1( )
∴∠3=∠4(等量代換)
∴EF是∠AED的平分線(角平分線定義)
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】某超市預測某飲料有發(fā)展前途,用1600元購進一批飲料,面市后果然供不應求,又用6000元購進這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價比第一批貴2元.
(1)第一批飲料進貨單價多少元?
(2)若二次購進飲料按同一價格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價至少為多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的三個頂點的坐標分別是:A(2,2),B(1,0),C(3,1).
(1)畫出△ABC關于x軸對稱的△A′B′C′,并求出點A′、B′、C′的坐標.
(2)在坐標平面內是否存在點D,使得△COD為等腰三角形?若存在,直接寫出點D的坐標(找出滿足條件的兩個點即可);若不存在,請說明理由.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】某車間有技術工人85人,平均每天每人可加工甲種部件16個或乙種部件10個,2個甲種部件和3個乙種部件配成一套,問加工甲、乙兩種部件各安排多少人才能使每天加工的兩種部件剛好配套?并求出加工了多少套?
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角梯形
中,
,
為
邊上一點,
,且
.連接
交對角線
于
,連接
.下列結論:
![]()
①
;②
為等邊三角形;
③
; ④
.其中結論正確的是
A.只有①② | B.只有①②④ |
C.只有③④ | D.①②③④ |
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀理(解析)
提出問題:如圖1,在四邊形ABCD中,P是AD邊上任意一點,△PBC與△ABC和△DBC的面積之間有什么關系?探究發(fā)現(xiàn):為了解決這個問題,我們可以先從一些簡單的、特殊的情形入手:
當AP=
AD時(如圖2):
∵AP=
AD,△ABP和△ABD的高相等,
∴S△ABP=
S△ABD,
∵PD=AD﹣AP=
AD,△CDP和△CDA的高相等
∴S△CDP=
S△CDA,
∴S△PBC=S四邊形ABCD﹣S△ABP﹣S△CDP=S四邊形ABCD﹣
S△ABD﹣
S△CDA,
=S四邊形ABCD﹣
(S四邊形ABCD﹣S△DBC)﹣
(S四邊形ABCD﹣S△ABC)=
S△DBC+
S△ABC.
(1)當AP=
AD時,探求S△PBC與S△ABC和S△DBC之間的關系式并證明;
(2)當AP=
AD時,S△PBC與S△ABC和S△DBC之間的關系式為: ;
(3)一般地,當AP=
AD(n表示正整數(shù))時,探求S△PBC與S△ABC和S△DBC之間的關系為: ;
(4)當AP=
AD(0≤
≤1)時,S△PBC與S△ABC和S△DBC之間的關系式為: .
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】問題:如圖(1),點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關系.
【發(fā)現(xiàn)證明】小聰把△ABE繞點A逆時針旋轉90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請你利用圖(1)證明上述結論.
【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點E、F分別在邊BC、CD上,則當∠EAF與∠BAD滿足 關系時,仍有EF=BE+FD;請證明你的結論.
![]()
【探究應用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點E、F,且AE⊥AD,DF=40(
﹣1)米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長.(結果取整數(shù),參考數(shù)據(jù):
=1.41,
=1.73)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c(a≠0)與x軸交于A,B兩點(點A在點B的左側),與y軸交于點C,點A的坐標為(﹣1,0),且OC=OB,tan∠ACO=
.![]()
(1)求拋物線的解析式;
(2)若點D和點C關于拋物線的對稱軸對稱,直線AD下方的拋物線上有一點P,過點P作PH⊥AD于點H,作PM平行于y軸交直線AD于點M,交x軸于點E,求△PHM的周長的最大值;
(3)在(2)的條件下,以點E為端點,在直線EP的右側作一條射線與拋物線交于點N,使得∠NEP為銳角,在線段EB上是否存在點G,使得以E,N,G為頂點的三角形與△AOC相似?如果存在,請求出點G的坐標;如果不存在,請說明理由.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com