科目: 來源: 題型:
【題目】平面直角坐標(biāo)系中,△ABC的三個頂點坐標(biāo)分別為A(0,4),B(2,4),C(3,﹣1).
(1)試在平面直角坐標(biāo)系中,標(biāo)出A、B、C三點;
(2)求△ABC的面積.
(3)若△A1B1C1與△ABC關(guān)于x軸對稱,寫出A1、B1、C1的坐標(biāo).
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E為CD的中點,連接AE、BE,BE⊥AE,延長AE交BC的延長線于點F.
求證:(1)FC=AD;
(2)AB=BC+AD.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知等腰直角△ABC,點P是斜邊BC上一點(不與B,C重合),PE是△ABP的外接圓⊙O的直徑![]()
(1)求證:△APE是等腰直角三角形;
(2)若⊙O的直徑為2,求
的值
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A的坐標(biāo)為(3,﹣3),點B的坐標(biāo)為(﹣1,3),回答下列問題
(1)點C的坐標(biāo)是 .
(2)點B關(guān)于原點的對稱點的坐標(biāo)是 .
(3)△ABC的面積為 .
(4)畫出△ABC關(guān)于x軸對稱的△A′B′C′.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】.附圖(①)為一張三角形ABC紙片,P點在BC上.今將A折至P時,出現(xiàn)折線BD,其中D點在AC上,如圖(②)所示.若△ABC的面積為80,△DBC的面積為50,則BP與PC的長度比為何?( )
![]()
A.3:2 B.5:3 C.8:5 D.13:8
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示的坐標(biāo)系中,△ABC的三個頂點的坐標(biāo)依次為A(﹣1,2),B(﹣4,1),C(﹣2,﹣2).
(1)請在這個坐標(biāo)系中作出△ABC關(guān)于y軸對稱的△A1B1C1.
(2)分別寫出點A1、B1、C1的坐標(biāo).
(3)求△A1B1C1的面積.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)把左右兩邊計算結(jié)果相等的式子用線連接起來:
1﹣ |
|
1﹣ |
|
1﹣ |
|
1﹣ |
|
(2)觀察上面計算結(jié)果相等的各式之間的關(guān)系,可歸納得出:1﹣
=______
(3)利用上述規(guī)律計算下式的值:(1-
)×(1-
)×(1-
)×…×(1-
)×(1-
)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,以直角三角形AOC的直角頂點O為原點,以OC、OA所在直線為x軸和y軸建立平面直角坐標(biāo)系,點A(0,a),C(b,0)滿足
.D為線段AC的中點.在平面直角坐標(biāo)系中,以任意兩點P(x1,y1)、Q(x2,y2)為端點的線段中點坐標(biāo)為
,
.
![]()
(1)則A點的坐標(biāo)為 ;點C的坐標(biāo)為 .D點的坐標(biāo)為 .
(2)已知坐標(biāo)軸上有兩動點P、Q同時出發(fā),P點從C點出發(fā)沿x軸負方向以1個單位長度每秒的速度勻速移動,Q點從O點出發(fā)以2個單位長度每秒的速度沿y軸正方向移動,點Q到達A點整個運動隨之結(jié)束.設(shè)運動時間為t(t>0)秒.問:是否存在這樣的t,使S△ODP=S△ODQ,若存在,請求出t的值;若不存在,請說明理由.
(3)點F是線段AC上一點,滿足∠FOC=∠FCO,點G是第二象限中一點,連OG,使得∠AOG=∠AOF.點E是線段OA上一動點,連CE交OF于點H,當(dāng)點E在線段OA上運動的過程中,
的值是否會發(fā)生變化?若不變,請求出它的值;若變化,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】甲乙兩地相距400千米,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地,如圖,線段OA表示貨車離甲地的路程y(千米)與所用時間x(小時)之間的函數(shù)關(guān)系,折線BCD表示轎車離甲地的路程y(千米)與x(小時)之間的函數(shù)關(guān)系,根據(jù)圖象解答下列問題:
(1)求線段CD對應(yīng)的函數(shù)表達式;
(2)求E點的坐標(biāo),并解釋E點的實際意義;
(3)若已知轎車比貨車晚出發(fā)20分鐘,且到達乙地后在原地等待貨車,在兩車相遇后當(dāng)貨車和轎車相距30千米時,求貨車所用時間.
![]()
考點:一次函數(shù)的應(yīng)用.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,⊙A的圓心A的坐標(biāo)為(-1,0),半徑為1,點P為直線
上的動點,過點P作⊙A的切線,切點為Q,則切線長PQ的最小值是![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com