科目: 來源: 題型:
【題目】我們知道多項(xiàng)式的乘法可以利用圖形的面積進(jìn)行解釋,例如,(2a+b)(a+b)=2a2+3ab+b2就能用圖1或圖2等圖形的面積表示:
(1)請你寫出圖3所表示的一個等式: .
(2)試畫出一個圖形,使它的面積能表示成(a+b)(a+3b)=a2+4ab+3b2.
![]()
圖1 圖2 圖3
查看答案和解析>>
科目: 來源: 題型:
【題目】“直角”在初中幾何學(xué)習(xí)中無處不在. 如圖,已知∠AOB,請仿照小麗的方式,再用兩種不同的方法判斷∠AOB是否為直角(僅限用直尺和圓規(guī)).![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,如圖,在平行四邊形ABCD中,AC、BD相交于O點(diǎn),點(diǎn)E、F分別為BO、DO的中點(diǎn),連接AF,CE.![]()
(1)求證:四邊形AECF是平行四邊形;
(2)如果E,F(xiàn)點(diǎn)分別在DB和BD的延長線上時(shí),且滿足BE=DF,上述結(jié)論仍然成立嗎?請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】為預(yù)防甲型H1N1流感,某校對教室噴灑藥物進(jìn)行消毒.已知噴灑藥物時(shí)每立方米空氣中的含藥量y(毫克)與時(shí)間x(分鐘)成正比,藥物噴灑完后,y與x成反比例(如圖所示).現(xiàn)測得10分鐘噴灑完后,空氣中每立方米的含藥量為8毫克.![]()
(1)求噴灑藥物時(shí)和噴灑完后,y關(guān)于x的函數(shù)關(guān)系式;
(2)若空氣中每立方米的含藥量低于2毫克學(xué)生方可進(jìn)教室,問消毒開始后至少要經(jīng)過多少分鐘,學(xué)生才能回到教室?
(3)如果空氣中每立方米的含藥量不低于4毫克,且持續(xù)時(shí)間不低于10分鐘時(shí),才能殺滅流感病毒,那么此次消毒是否有效?為什么?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方形ABCD的面積為12,△ABC是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),對角線AC上有一點(diǎn)P使PE+PD的和最小,這個最小值為( )
![]()
A.
B.
C. 3 D. ![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知
內(nèi)接于
,
是直徑,點(diǎn)
在
上,
,過點(diǎn)
作
,垂足為
,連接
交
邊于點(diǎn)
.![]()
(1)求證:
∽
;
(2)求證:
;
(3)連接
,設(shè)
的面積為
,四邊形
的面積為
,若
,求
的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點(diǎn)E是△ABC的內(nèi)心,AE的延長線交BC于點(diǎn)F,交△ABC的外接圓⊙O于點(diǎn)D,連接BD,過點(diǎn)D作直線DM,使∠BDM=∠DAC. (Ⅰ)求證:直線DM是⊙O的切線;
(Ⅱ)求證:DE2=DFDA.![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線AB、CD相交于O,OD平分∠AOF,OE⊥CD于點(diǎn)O,∠1=50°,求∠BOC、∠BOF的度數(shù).
![]()
解:∵OE⊥CD( ),
∴∠DOE=_____°( ),
∵∠1=50°( ),
∴∠AOD=∠________-∠________=________°,
∵∠BOC與∠AOD為_______角(____________),
∴∠BOC=∠________=∠_________°(_____________),
∵OD平分∠AOF(______________),
且∠AOD=____________°(______________),
∴∠AOF=2∠__________=________°( ),
∵∠BOF+∠AOF=______°( ),
∴∠BOF=______°-∠AOF=_________°.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在給定的一張平行四邊形紙片上作一個菱形.甲、乙兩人的作法如下:
甲:連接AC,作AC的垂直平分線MN分別交AD,AC,BC于M,O,N,連接AN,CM,則四邊形ANCM是菱形.
乙:分別作∠A,∠B的平分線AE,BF,分別交BC,AD于E,F(xiàn),連接EF,則四邊形ABEF是菱形.
根據(jù)兩人的作法可判斷
![]()
A.甲正確,乙錯誤 B.乙正確,甲錯誤 C.甲、乙均正確 D.甲、乙均錯誤
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com