科目: 來源: 題型:
【題目】我校開展了“圖書節(jié)”活動,為了解開展情況,從七年級隨機抽取了150名學(xué)生對他們每天閱讀時間和閱讀方式(要求每位學(xué)生只能選一種閱讀方式)進行了問卷調(diào)查,并繪制了如下不完全的統(tǒng)計圖
![]()
![]()
根據(jù)上述統(tǒng)計圖提供的信息,解答下列問題:
(1)學(xué)生每天閱讀時間人數(shù)最多的是______段,閱讀時間在
段的扇形的圓心角度數(shù)是______;
(2)補全條形統(tǒng)計圖;
(3)若將寫讀后感、筆記積累、畫圓點讀三種方式為有記憶閱讀,求筆記積累人數(shù)占有記憶閱讀人數(shù)的百分比.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系中,O為坐標原點,點A坐標為(1,0),以O(shè)A為邊在第一象限內(nèi)作等邊△OAB,C為x軸正半軸上的一個動點(OC>1),連接BC,以BC為邊在第一象限內(nèi)作等邊△BCD,直線DA交y軸于E點.![]()
(1)如圖,當C點在x軸上運動時,設(shè)AC=x,請用x表示線段AD的長;
(2)隨著C點的變化,直線AE的位置變化嗎?若變化,請說明理由;若不變,請求出直線AE的解析式.
(3)以線段BC為直徑作圓,圓心為點F,當點C坐標為多少時直線EF∥直線BO?這時OF和直線BO的位置關(guān)系如何?請給予證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知直線l1∥l2,l3、l4和l1、l2分別交于點A、B、C、D,點P在直線l3或l4上且不與點A、B、C、D重合.記∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.
![]()
(1)若點P在圖(1)位置時,求證:∠3=∠1+∠2;
(2)若點P在圖(2)位置時,請直接寫出∠1、∠2、∠3之間的關(guān)系;
(3)若點P在圖(3)位置時,寫出∠1、∠2、∠3之間的關(guān)系并給予證明;
(4)若點P在C、D兩點外側(cè)運動時,請直接寫出∠1、∠2、∠3之間的關(guān)系.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A(3,0),B(﹣1,0)兩點,與y軸相交于點C(0,﹣3)![]()
(1)求該二次函數(shù)的解析式;
(2)設(shè)E是y軸右側(cè)拋物線上異于點A的一個動點,過點E作x軸的平行線交拋物線于另一點F,過點F作FG垂直于x軸于點G,再過點E作EH垂直于x軸于點H,得到矩形EFGH,則在點E的運動過程中,當矩形EFGH為正方形時,求出該正方形的邊長;
(3)設(shè)P點是x軸下方的拋物線上的一個動點,連接PA、PC,求△PAC面積的取值范圍,若△PAC面積為整數(shù)時,這樣的△PAC有幾個?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1所示,已知BC∥OA, ∠B=∠A=120°.
(1)證明:OB∥AC;
(2)如圖2所示,若點E,F在BC上,且∠FOC=∠AOC,OE平分∠BOF,求∠EOC的度數(shù).
(3)在(2)的條件下,若左右平移AC,如圖3所示,那么∠OCB∶∠OFB的比值是否隨之發(fā)生變化?若變化,請說明理由;若不變化,請求出這個比值.
(4)在(2)和(3)的條件下,當∠OEB=∠OCA時,求∠OCA的度數(shù).
![]()
![]()
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點E、F是邊長為4的正方形ABCD邊AD、AB上的動點,且AF=DE,BE交CF于點P,在點E、F運動的過程中,PA的最小值為( ) ![]()
A.2
B.2 ![]()
C.4
﹣2
D.2
﹣2
查看答案和解析>>
科目: 來源: 題型:
【題目】已知A(4,1),B(5,4),將線段AB繞點A逆時針旋轉(zhuǎn)90°得線段AC,則點C的坐標為( )![]()
A.(1,2)
B.(2,1)
C.(7,0)
D.(1,3)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1是一個長為2a,寬為2b的長方形,沿圖中虛線剪開分成四塊小長方形,然后按圖2的形狀拼成一個正方形.
(1)寫出圖2的陰影部分的正方形的邊長.
(2)用兩種不同的方法求圖中的陰影部分的面積.
(3)觀察如圖2,寫出
這三個代數(shù)式之間的等量關(guān)系.
(4)根據(jù)(3)題中的等量關(guān)系,解決問題:若
求
的值
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】下面是某同學(xué)對多項式(x2-4x+2)(x2-4x+6)+4進行因式分解的過程.
解:設(shè)x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
=y2+8y+16 (第二步)
=(y+4)2(第三步)
=(x2-4x+4)2(第四步)
回答下列問題:
(1)該同學(xué)第二步到第三步運用了因式分解的_______.
A.提取公因式 |
B.平方差公式 |
C.兩數(shù)和的完全平方公式 |
D.兩數(shù)差的完全平方公式 |
(2)該同學(xué)因式分解的結(jié)果是否徹底?________.(填“徹底”或“不徹底”)若不徹底,請直接寫出因式分解的最后結(jié)果_________ .
(3)請你模仿以上方法嘗試對多項式(x2-2x)(x2-2x+2)+1進行因式分解.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com