科目: 來源: 題型:
【題目】如圖,圖象
反映了某公司產(chǎn)品的銷售收入與銷售量之間的關系,圖象
反映了某公司產(chǎn)品的銷售成本與銷售量之間的關系,則:
(1)當銷售量為2噸時,銷售收入為多少元?銷售成本呢?此時公司是贏利還是虧損?
(2)當銷售量等于多少時該公司收入等于銷售成本?
(3)當銷售量在什么范圍內(nèi)時,該公司虧損?
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】在乘法公式的學習中,我們采用了構(gòu)造幾何圖形的方法研究問題,借助直觀、形象的幾何模型,加深對乘法公式的認識和理解,從中感悟數(shù)形結(jié)合的思想方法,感悟幾何與代數(shù)內(nèi)在的統(tǒng)一性,根據(jù)課堂學習的經(jīng)驗,解決下列問題:
(1)如圖①邊長為(x+3)的正方形紙片,剪去一個邊長為x的正方形之后,剩余部分可拼剪成一個長方形(不重疊無縫隙),則這個長方形的面積為 (用含x的式子表示).
(2)如果你有5張邊長為a的正方形紙,4張長、寬分別為a、b(a>b)的長方形紙片,3張邊長為b正方形紙片.現(xiàn)從其中取出若干張紙片,每種紙片至少取一張,把取出的這些紙片拼成一個正方形(不重疊無縫隙),則拼成的正方形的邊長最長可以為
A.a+b;B.a+2b;C.a+3b;D.2a+b.
(3)1個大正方形和4個大小完全相同的小正方形按圖②③兩種方式擺放,求圖③中,大正方形中未被4個小正方形覆蓋部分的面積.(用含m、n的代數(shù)式表示)
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方形ABCD頂點A,D在⊙O上,邊BC經(jīng)過⊙O上一定P,且PF平分∠AFC,邊 AB,CD分別與⊙O相交于點E,F(xiàn),連接EF.![]()
(1)求證:BC是⊙O的切線;
(2)若FC=2,求PC的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】為加快建設經(jīng)濟強、環(huán)境美、后勁足、群眾富的實力微山,魅力微山,活力微山,幸福微山;聚力脫貧攻堅,全面完成脫貧任務,某鄉(xiāng)鎮(zhèn)特制定一系列幫扶甲、乙兩貧困村的計劃,現(xiàn)決定從某地運送1225箱魚苗到甲、乙兩村養(yǎng)殖.若用大、小貨車共20輛,則恰好能一次性運完這批魚苗,已知這兩種大小貨車的載貨能力和其運往甲、乙兩村的運費如表:
車型 | 載貨能力(箱/輛) | 運費 | |
甲村(元/輛) | 乙村(元/輛) | ||
大貨車 | 70 | 800 | 900 |
小貨車 | 35 | 400 | 600 |
(1)求這20輛車中大、小貨車各多少輛?
(2)現(xiàn)安排其中16輛貨車前往甲村,其余貨車前往乙村,設前往甲村的大貨車為x輛,前往甲、乙兩村總費用為y元,試求出y與x的函數(shù)解析式及x的取值范圍;
(3)在(2)的條件下,若運往甲村的魚苗不少于980箱,請你寫出使總費用最少的貨車調(diào)配方案,并求出最少費用.
查看答案和解析>>
科目: 來源: 題型:
【題目】霧霾天氣已經(jīng)成為人們普遍關注的話題,霧霾不僅僅影響人們的出行,還影響著人們的健康.在2017年2月周末休息期間,某校九年級一班綜合實踐小組的同學以“霧霾天氣的主要成因”為主題,隨機調(diào)查了太原市部分市民的觀點,并對調(diào)查結(jié)果進行了整理,繪制了如下不完整的統(tǒng)計表及統(tǒng)計圖,觀察并回答下列問題:
類別 | 霧霾天氣的主要成因 | 百分比 |
A | 工業(yè)污染 | 45% |
B | 汽車尾氣排放 | m |
C | 城中村燃煤問題 | 15% |
D | 其他(綠化不足等) | n |
![]()
(1)請你求出本次被調(diào)查市民的人數(shù)及m,n的值,并補全條形統(tǒng)計圖;
(2)若該市有800萬人口,請你估計持有B,C兩類看法的市民共有多少人?
(3)小明同學在四個質(zhì)地、大小、形狀都完全相同的小球上標記A,B,C,D代表四個霧霾天氣的主要成因中,放在一個不透明的盒子中,他先隨機抽取一個小球,放回去,再隨機抽取一個小球,請用畫樹狀圖或列表的方法,求出小穎同學剛好抽到B和D的概率.(用A,B,C,D表示各項目)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AD=5cm,BC=9cm.M是CD的中點,P是BC邊上的一動點(P與B,C不重合),連接PM并延長交AD的延長線于Q.
(1)試說明△PCM≌△QDM.
(2)當點P在點B、C之間運動到什么位置時,四邊形ABPQ是平行四邊形?并說明理由.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀第(1)題解答過程填理由,并解答第(2)題
(1)已知:如圖1,AB∥CD,P為AB,CD之間一點,求∠B+∠C+∠BPC的大小.
解:過點P作PM∥AB
∵AB∥CD(已知)
∴PM∥CD ,
∴∠B+∠1=180°, .
∴∠C+∠2=180°
∵∠BPC=∠1+∠2
∴∠B+∠C+∠BPC=360°
(2)我們生活中經(jīng)常接觸小刀,如圖2小刀刀柄外形是一個直角梯形挖去一個小半圈,其中AF∥EG,∠AEG=90°,刀片上、下是平行的(AB∥CD),轉(zhuǎn)動刀片時會形成∠1和∠2,那么∠1+∠2的大小是否會隨刀片的轉(zhuǎn)動面改變,如不改變,求出其大;如改變,請說明理由.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,將邊長分別為6,2
的矩形硬紙片ABCD折疊,使AB,CB均落在對角線BD上,點A與點H重合,點C與點G重合,折痕分別為BE,BF.下面三個結(jié)論:①∠EBF=45°;②FG是BD的垂直平分線;③DF=5.其中正確的結(jié)論是(只填序號)![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com