科目: 來源: 題型:
【題目】為了備戰(zhàn)初三物理、化學(xué)實驗操作考試.某校對初三學(xué)生進行了模擬訓(xùn)練.物理、化學(xué)各有4個不同的操作實驗題目,物理用番號①、②、③、④代表,化學(xué)用字母a、b、c、d表示.測試時每名學(xué)生每科只操作一個實驗,實驗的題目由學(xué)生抽簽確定.小張同學(xué)對物理的①、②和化學(xué)的b、c實驗準(zhǔn)備得較好,請用樹形圖或列表法求他兩科都抽到準(zhǔn)備得較好的實驗題目的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】(數(shù)學(xué)實驗)如圖,有足夠多的邊長為a的小正方形(A類)、長為a寬為b的長方形(B類)以及邊長為b的大正方形(C類),發(fā)現(xiàn)利用圖①中的三種材料各若干個可以拼出一些長方形來解釋某些等式.例如圖②可以解釋為:(a+2b)(a+b)=a2+3ab+2b2.
![]()
(初步運用)
(1)仿照例子,圖③可以解釋為: ;
(2)取圖①中的若干個(三種圖形都要取到)拼成一個長方形,使它的邊長分別為(2a+3b)、(a+5b),不畫圖形,試通過計算說明需要C類卡片多少張;
(拓展運用)
若取其中的若干個(三種圖形都要取到)拼成一個長方形,使它的面積為2a2+5ab+3b2,通過操作你會發(fā)現(xiàn)拼成的長方形的長寬分別是 ,將2a2+5ab+3b2改寫成幾個整式積的形式為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點.![]()
(1)求證:AC2=ABAD;
(2)求證:CE∥AD;
(3)若AD=5,AB=7,求
的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知一條直線過點(0,4),且與拋物線y=
x2交于A,B兩點,其中點A的橫坐標(biāo)是﹣2.![]()
(1)求這條直線的函數(shù)關(guān)系式及點B的坐標(biāo).
(2)在x軸上是否存在點C,使得△ABC是直角三角形?若存在,求出點C的坐標(biāo),若不存在,請說明理由.
(3)過線段AB上一點P,作PM∥x軸,交拋物線于點M,點M在第一象限,點N(0,1),當(dāng)點M的橫坐標(biāo)為何值時,MN+3MP的長度最大?最大值是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在數(shù)軸上A,B兩點對應(yīng)的數(shù)分別是6,-6,∠DCE=90°(C與O重合,D點在數(shù)軸的正半軸上)
(1)如圖1,若CF平分∠ACE,則∠AOF=_______;
(2)如圖2,將∠DCE沿數(shù)軸的正半軸向右平移t(0<t<3)個單位后,再繞點頂點C逆時針旋轉(zhuǎn)30t度,作CF平分∠ACE,此時記∠DCF=α.
①當(dāng)t=1時,α=_______
②猜想∠BCE和α的數(shù)量關(guān)系,并證明;
(3)如圖3,開始∠D1C1E1與∠DCE重合,將∠DCE沿數(shù)軸的正半軸向右平移t(0<t<3)個單位,再繞點頂點C逆時針旋轉(zhuǎn)30t度,作CF平分∠ACE,此時記∠DCF=α,與此同時,將∠D1C1E1沿數(shù)軸的負(fù)半軸向左平移t(0<t<3)個單位,再繞點頂點C1順時針旋轉(zhuǎn)30t度,作C1F1平分∠AC1E1,記∠D1C1F1=β,若α與β滿足|α-β|=40°,請直接寫出t的值為
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,P是等邊三角形ABC內(nèi)的一點,連結(jié)PA,PB,PC,以BP為邊作∠PBQ=60°,且BQ=BP,連結(jié)CQ.若PA∶PB∶PC=3∶4∶5,連結(jié)PQ,試判斷△PQC的形狀( )
![]()
A. 直角三角形 B. 等腰三角形 C. 銳角三角形 D. 鈍角三角形
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,時鐘是我們常見的生活必需品,其中蘊含著許多數(shù)學(xué)知識.
![]()
(1)我們知道,分針和時針轉(zhuǎn)動一周都是 度,分針轉(zhuǎn)動一周是 分鐘,時針轉(zhuǎn)動一周有12小時,等于720分鐘;所以,分針每分鐘轉(zhuǎn)動 度,時針每分鐘轉(zhuǎn)動 度.
(2)從5:00到5:30,分針與時針各轉(zhuǎn)動了多少度?
(3)請你用方程知識解釋:從1:00開始,在1:00到2:00之間,是否存在某個時刻,時針與分針在同一條直線上?若不存在,說明理由;若存在,求出從1:00開始經(jīng)過多長時間,時針與分針在同一條直線上.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四邊形ABCD中,已知AB=BC=CD,∠BAD和∠CDA均為銳角,點F是對角線BD上的一點,EF∥AB交AD于點E,F(xiàn)G∥BC交DC于點G,四邊形EFGP是平行四邊形,給出如下結(jié)論:
①四邊形EFGP是菱形;
②△PED為等腰三角形;
③若∠ABD=90°,則△EFP≌△GPD;
④若四邊形FPDG也是平行四邊形,則BC∥AD且∠CDA=60°.
其中正確的結(jié)論的序號是(把所有正確結(jié)論的序號都填在橫線上).![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,線段AB上有一任意點C,點M是線段AC的中點,點N是線段BC的中點,當(dāng)AB=6cm時,
(1)求線段MN的長.
(2)當(dāng)C在AB延長線上時,其他條件不變,求線段MN的長.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com