科目: 來源: 題型:
【題目】已知:如圖,AB∥CD,∠B=70°,∠BCE=20°,∠CEF=130°,請判斷AB與EF的位置關(guān)系,并說明理由.
解: ,理由如下:
∵AB∥CD,
∴∠B=∠BCD,( )
∵∠B=70°,
∴∠BCD=70°,( )
∵∠BCE=20°,
∴∠ECD=50°,
∵∠CEF=130°,
∴ + =180°,
∴EF∥ ,( )
∴AB∥EF.( )
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,以平行四邊形ABCD的頂點A為圓心,AB為半徑作圓,分別交BC,AD于E,F(xiàn)兩點,交BA的延長于G,判斷弧EF和弧FG是否相等,并說明理由。![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】計算下列各題:
(1)(﹣1)2018+3﹣2﹣(π﹣3.14)0
(2)(x+3)2﹣x2
(3)(x+2)(3x﹣y)﹣3x(x+y)
(4)(2x+y+1)(2x+y﹣1)
查看答案和解析>>
科目: 來源: 題型:
【題目】如果三角形有一邊上的中線恰好等于這邊的長,那么稱這個三角形為“有趣三角形”,這條中線稱為“有趣中線”。如圖,在三角形ABC中,∠C=90°,較短的一條直角邊BC=1,且三角形ABC是“有趣三角形”,求三角形ABC的“有趣中線”的長。![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在
中,已知
,
,
,點
是
邊上的任意一動點,點
與點
關(guān)于直線
對稱,直線
與直線
相交于點
.
(1)求
邊上的高;
(2)當(dāng)
為何值時,△
與△
重疊部分的面積最大,并求出最大值;
(3)連接
,當(dāng)
為直角三角形時,求
的度數(shù).
![]()
![]()
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知AM∥BN,∠A=60°,點P是射線M上一動點(與點A不重合),BC,BD分別平分∠ABP和∠PBN,分別交射線AM于點C,D.
(1)∠CBD=
(2)當(dāng)點P運動到某處時,∠ACB=∠ABD,則此時∠ABC=
(3)在點P運動的過程中,∠APB與∠ADB的比值是否隨之變化?若不變,請求出這個比值:若變化,請找出變化規(guī)律.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀與思考:
整式乘法與因式分解是方向相反的變形,由
,
可得
.
利用這個式子可以將某些二次項系數(shù)是1的二次三項式分解因式.
例如:將式子
分解因式.
這個式子的常數(shù)項
,一次項系
,
所以
.
![]()
解:
.
上述分解因式
的過程,也可以用十字相乘的形式形象地表示:先分解二次項系數(shù),分別寫在十字交叉線的左上角和左下角;再分解常數(shù)項,分別寫在十字交叉線的右上角和右下角;然后交叉相乘,求代數(shù)和,使其等于一次項系數(shù)(如右圖).
請仿照上面的方法,解答下列問題:
(1)分解因式:
=___________________;
(2)若
可分解為兩個一次因式的積,則整數(shù)P的所有可能值是________.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知平面內(nèi)一點P,若點P到兩條相交直線l1和l2的距離都相等,且距離均為h(h>0),則稱點P叫做直線l1和l2的“h距離點”. 例如圖1所示,直線l1和l2互相垂直,交于O點,平面內(nèi)一點P到兩直線的距離都是2,則稱點P叫做直線l1和l2的“2距離點”.
(1)若直線l1和l2互相垂直,且交于O點,平面內(nèi)一點P是直線l1和l2的“7距離點”,直接寫出OP的長度為 ;
(2)如圖2所示,直線l1和l2相交于點O,夾角為60°,已知平面內(nèi)一點P是直線l1和l2的“3距離點”,求出OP的長度;
(3)已知三條直線兩兩相交后形成一個等邊三角形,如圖3所示,在等邊△ABC中,點P是三角形內(nèi)部一點,且點P分別是等邊△ABC三邊所在直線的“
距離點”,請你直接寫出△ABC的面積是 .
![]()
![]()
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】小明四等分弧AB,他的作法如下:
①連接AB(如圖);作AB的垂直平分線CD交弧AB于點M,交AB于點T;![]()
②分別作AT,TB的垂直平分線EF,GH,交弧AB于N,P兩點,則N,M,P三點把弧AB四等分。你認(rèn)為小明的作法是否正確: , 理由是。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com