科目: 來源: 題型:
【題目】如圖,半圓O的直徑AB=10,有一條定長為6的動弦CD在弧AB上滑動(點C、點D分別不與點A、點B重合),點E、F在AB上,EC⊥CD,F(xiàn)D⊥CD. ![]()
(1)求證:EO=OF;
(2)聯(lián)結(jié)OC,如果△ECO中有一個內(nèi)角等于45°,求線段EF的長;
(3)當動弦CD在弧AB上滑動時,設變量CE=x,四邊形CDFE面積為S,周長為l,問:S與l是否分別隨著x的變化而變化?試用所學的函數(shù)知識直接寫出它們的函數(shù)解析式及函數(shù)定義域,以說明你的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,二次函數(shù)y=x2﹣2x+m(m>0)的對稱軸與比例系數(shù)為5的反比例函數(shù)圖象交于點A,與x軸交于點B,拋物線的圖象與y軸交于點C,且OC=3OB.![]()
(1)求點A的坐標;
(2)求直線AC的表達式;
(3)點E是直線AC上一動點,點F在x軸上方的平面內(nèi),且使以A、B、E、F為頂點的四邊形是菱形,直接寫出點F的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,∠E=50°,∠BAC=50°,∠D=110°,求∠ABD的度數(shù).
請完善解答過程,并在括號內(nèi)填寫相應的理論依據(jù).
解:∵∠E=50°,∠BAC=50°,(已知)
∴∠E= (等量代換)
∴ ∥ .( )
∴∠ABD+∠D=180°.( )
∴∠D=110°,(已知)
∴∠ABD=70°.(等式的性質(zhì))
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,在平行四邊形ABCD中,AC為對角線,E是邊AD上一點,BE⊥AC交AC于點F,BE、CD的延長線交于點G,且∠ABE=∠CAD. ![]()
(1)求證:四邊形ABCD是矩形;
(2)如果AE=EG,求證:AC2=BCBG.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,在平面直角坐標系中,已知點R(1,0),點K(4,4),直線y=-
x+b過點K , 分別交x軸、y軸于U、V兩點,以點R為圓心, RK為半徑作⊙R , ⊙R交x軸于A.![]()
(1)若二次函數(shù)的圖象經(jīng)過點A、B(-2,0)、C(0,-8),求二次函數(shù)的解析式;
(2)判斷直線UV與⊙R的位置關(guān)系,并說明理由;
(3)若動點P、Q同時從A點都以相同的速度分別沿AB、AC邊運動,當點P運動到B點時,點Q停止運動,這時,在x軸上是否存在點E , 使得以A、E、Q為頂點的三角形是等腰三角形.若存在,請求出E點坐標,若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】上海首條中運量公交線路71路已正式開通.該線路西起滬青平公路申昆路,東至延安東路中山東一路,全長17.5千米.71路車行駛于專設的公交車道,又配以專用的公交信號燈.經(jīng)測試,早晚高峰時段71路車在專用車道內(nèi)行駛的平均速度比在非專用車道每小時快6千米,因此單程可節(jié)省時間22.5分鐘.求早晚高峰時段71路車在專用車道內(nèi)行駛的平均車速.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,已知正比例函數(shù)的圖象與反比例函數(shù)y=
的圖象交于點A(m,4).
(1)求正比例函數(shù)的解析式;
(2)將正比例函數(shù)的圖象向下平移6個單位得到直線l,設直線l與x軸的交點為B,求∠ABO的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在正方形ABCD中,P在對角線AC上,E在AC的延長線上,PB=PM , DE=EF.![]()
(1)求證:∠CDE=∠F;
(2)若AB=5,CM=1,求PB的長;
(3)如圖2,若BF=10,△QCF是以CF為底的等腰三角形,連接DQ , 試求△CDQ的最大面積.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com