科目: 來源: 題型:
【題目】如圖,在平面內直角坐標系中,直線y=2x+4分別交x軸,y軸于點A,C,點D(m,2)在直線AC上,點B在x軸正半軸上,且OB=3OC,點E是y軸上任意一點,記點E為(0,n).![]()
(1)求點D的坐標及直線BC的解析式;
(2)連結DE,將線段DE繞點D按順時針旋轉90°得線段DG,作正方形DEFG,是否存在n的值,使正方形的頂點F落在△ABC的邊上?若存在,求出所有滿足條件的n的值;若不存在,說明理由.
(3)作點E關于AC的對稱點E′,當n為何值時,AE′分別與AC,BC,AB垂直?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ACB=90°,AC=BC,在斜邊AB上取一點D,過點D作DE∥BC,交AC于點E,現將△ADE繞點A旋轉一定角度到如圖2所示的位置(點D在△ABC的內部),使得∠ABD+∠ACD=90°.![]()
(1)①求證:△ABD∽△ACE;
②若CD=1,BD=
,求AD的長.
(2)如圖3,將原題中的條件“AC=BC”去掉,其它條件不變,設
=
=k,若CD=1,BD=2,AD=3,求k的值.![]()
(3)如圖4,將原題中的條件“∠ACB=90°”去掉,其它條件不變,若
=
=
,設CD=m,BD=n,AD=p,試探究m,n,p三者之間滿足的等量關系.(直接寫出結果,不必寫出解答過程)![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】某網店嘗試用單價隨天數而變化的銷售模式銷售一種商品,利用30天的時間銷售一種成本為10元/件的商品售后,經過統(tǒng)計得到此商品單價在第x天(x為正整數)銷售的相關信息,如表所示:
銷售量n(件) | n=50﹣x |
銷售單價m(元/件) | 當1≤x≤20時,m=20+ |
當21≤x≤30時,m=10+ |
(1)請計算第幾天該商品單價為25元/件?
(2)求網店銷售該商品30天里所獲利潤y(元)關于x(天)的函數關系式;
(3)這30天中第幾天獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在AB的延長線上,CD與⊙O相切于點D,CE⊥AD,交AD的延長線于點E. ![]()
(1)求證:∠BDC=∠A;
(2)若CE=2
,DE=2,求AD的長.
(3)在(2)的條件下,求弧BD的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】李老師為了解學生完成數學課前預習的具體情況,對部分學生進行了跟蹤調查,并將調查結果分為四類,A:很好;B:較好;C:一般;D:較差.制成以下兩幅不完整的統(tǒng)計圖, ![]()
請你根據統(tǒng)計圖解答下列問題:
(1)李老師一共調查了多少名同學?
(2)C類女生有名,D類男生有名,將下面條形統(tǒng)計圖補充完整;
(3)為了共同進步,李老師想從被調查的A類和D類學生中各隨機選取一位同學進行“一幫一”互助學習,請用列表法或畫樹形圖的方法求出所選兩位同學恰好是一位男同學和一位女同學的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,圖①是某電腦液晶顯示器的側面圖,顯示屏AO可以繞點O旋轉一定的角度.研究表明:顯示屏頂端A與底座B的連線AB與水平線BC垂直時(如圖②),人觀看屏幕最舒適.此時測得∠BAO=15°,AO=30cm,∠OBC=45°,求AB的長度.(結果精確到1cm)(參考數據:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,
≈1.414) ![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,ABCD中,E是AD的中點,連接CE并延長,與BA的延長線交于點F. 請你找出圖中與AF相等的一條線段,并加以證明.(不再添加其它線段,不再標注或使用其它字母) ![]()
(1)結論:AF= .
(2)證明結論。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=﹣x2+2x+3與x軸交于A,B兩點(點A在點B的左側),與y軸交于點C. ![]()
(1)將拋物線沿y軸平移t(t>0)個單位,當平移后的拋物線與線段OB有且只有一個交點時,則t的取值范圍是 .
(2)拋物線上存在點P,使∠BCP=∠BAC﹣∠ACO,則點P的坐標為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函數y=
在第一象限的圖象經過點B,與OA交于點P,且OA2﹣AB2=18,則點P的橫坐標為( ) ![]()
A.9
B.6
C.3
D.3 ![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com