科目: 來(lái)源: 題型:
【題目】我們可以通過(guò)類比聯(lián)想,引申拓展研究典型題目,可達(dá)到解一題知一類的目的,下面是一個(gè)案例,請(qǐng)補(bǔ)充完整
原題:如圖1,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說(shuō)明理由.![]()
(1)思路梳理
∵AB=AD,
∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,點(diǎn)F、D、G共線.
根據(jù) , 易證△AFG≌ , 得EF=BE+DF.
(2)類比引申
如圖2,四邊形ABCD中,AB=AD,∠BAD=90°點(diǎn)E、F分別在邊BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,則當(dāng)∠B與∠D滿足等量關(guān)系時(shí),仍有EF=BE+DF.
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D、E均在邊BC上,且∠DAE=45°.猜想BD、DE、EC應(yīng)滿足的等量關(guān)系,并寫出推理過(guò)程.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某市政府大力扶持大學(xué)生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈,銷售過(guò)程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):y=﹣10x+500.
(1)設(shè)李明每月獲得利潤(rùn)為w(元),求出w與x的函數(shù)關(guān)系式.
(2)如果李明想要每月獲得2000元的利潤(rùn),那么銷售單價(jià)應(yīng)定為多少元?
(3)當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?得最大利潤(rùn)是多少?
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A,B兩點(diǎn),其中點(diǎn)A(﹣1,0),點(diǎn)C(0,5),點(diǎn)D(1,8)都在拋物線上,M為拋物線的頂點(diǎn). ![]()
(1)求拋物線的函數(shù)解析式;
(2)求△MCB的面積;
(3)根據(jù)圖形直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某校在基地參加社會(huì)實(shí)踐話動(dòng)中,帶隊(duì)老師考問學(xué)生:基地計(jì)劃新建一個(gè)矩形的生物園地,一邊靠舊墻(墻足夠長(zhǎng)),另外三邊用總長(zhǎng)69米的不銹鋼柵欄圍成,與墻平行的一邊留一個(gè)寬為3米的出入口,如圖所示,如何設(shè)計(jì)才能使園地的面積最大?下面是兩位學(xué)生爭(zhēng)議的情境: ![]()
請(qǐng)根據(jù)上面的信息,解決問題:
(1)設(shè)AB=x米(x>0),試用含x的代數(shù)式表示BC的長(zhǎng);
(2)請(qǐng)你判斷誰(shuí)的說(shuō)法正確,為什么?
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,AB是半圓O的直徑,點(diǎn)P是半圓上不與點(diǎn)A、B重合的一個(gè)動(dòng)點(diǎn),延長(zhǎng)BP到點(diǎn)C,使PC=PB,D是AC的中點(diǎn),連接PD、PO. ![]()
(1)求證:△CDP≌△POB;
(2)填空:
①若AB=4,則四邊形AOPD的最大面積為;
②連接OD,當(dāng)∠PBA的度數(shù)為時(shí),四邊形BPDO是菱形.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在建立平面直角坐標(biāo)系的方格紙中,每個(gè)小方格都是邊長(zhǎng)為1的小正方形,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)P的坐標(biāo)為(﹣1,0),請(qǐng)按要求畫圖與作答: ![]()
(1)把△ABC繞點(diǎn)P旋轉(zhuǎn)180°得△A′B′C.
(2)把△ABC向右平移7個(gè)單位得△A″B″C″.
(3)△A′B′C與△A″B″C″是否成中心對(duì)稱,若是,找出對(duì)稱中心P′,并寫出其坐標(biāo).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a、b、c為常數(shù),a≠0)經(jīng)過(guò)點(diǎn)A(﹣1,0),B(5,﹣6),C(6,0).![]()
(1)求拋物線的解析式;
(2)如圖,在直線AB下方的拋物線上是否存在點(diǎn)P使四邊形PACB的面積最大?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)Q為拋物線的對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),試指出△QAB為等腰三角形的點(diǎn)Q一共有幾個(gè)?并請(qǐng)求出其中某一個(gè)點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】我們可以通過(guò)類比聯(lián)想,引申拓展研究典型題目,可達(dá)到解一題知一類的目的,下面是一個(gè)案例,請(qǐng)補(bǔ)充完整
原題:如圖1,點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,連接EF,則EF=BE+DF,試說(shuō)明理由.![]()
(1)思路梳理
∵AB=AD,
∴把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,點(diǎn)F、D、G共線.
根據(jù) , 易證△AFG≌ , 得EF=BE+DF.
(2)類比引申
如圖2,四邊形ABCD中,AB=AD,∠BAD=90°點(diǎn)E、F分別在邊BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,則當(dāng)∠B與∠D滿足等量關(guān)系時(shí),仍有EF=BE+DF.
(3)聯(lián)想拓展
如圖3,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D、E均在邊BC上,且∠DAE=45°.猜想BD、DE、EC應(yīng)滿足的等量關(guān)系,并寫出推理過(guò)程.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某市政府大力扶持大學(xué)生創(chuàng)業(yè).李明在政府的扶持下投資銷售一種進(jìn)價(jià)為每件20元的護(hù)眼臺(tái)燈,銷售過(guò)程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):y=﹣10x+500.
(1)設(shè)李明每月獲得利潤(rùn)為w(元),求出w與x的函數(shù)關(guān)系式.
(2)如果李明想要每月獲得2000元的利潤(rùn),那么銷售單價(jià)應(yīng)定為多少元?
(3)當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?得最大利潤(rùn)是多少?
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A,B兩點(diǎn),其中點(diǎn)A(﹣1,0),點(diǎn)C(0,5),點(diǎn)D(1,8)都在拋物線上,M為拋物線的頂點(diǎn). ![]()
(1)求拋物線的函數(shù)解析式;
(2)求△MCB的面積;
(3)根據(jù)圖形直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com