科目: 來源: 題型:
【題目】已知圓M:(x﹣a)2+(y﹣b)2=9,M在拋物線C:x2=2py(p>0)上,圓M過原點且與C的準線相切. (Ⅰ)求C的方程;
(Ⅱ)點Q(0,﹣t)(t>0),點P(與Q不重合)在直線l:y=﹣t上運動,過點P作C的兩條切線,切點分別為A,B.求證:∠AQO=∠BQO(其中O為坐標原點).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)面ABB1A1為菱形且
,D,M分別為CC1和A1B的中點,A1D⊥CC1 , AA1=A1D=2,BC=1. ![]()
(Ⅰ)證明:直線MD∥平面ABC;
(Ⅱ)求二面角B﹣AC﹣A1的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某工廠的污水處理程序如下:原始污水必先經(jīng)過A系統(tǒng)處理,處理后的污水(A級水)達到環(huán)保標準(簡稱達標)的概率為p(0<p<1).經(jīng)化驗檢測,若確認達標便可直接排放;若不達標則必須進行B系統(tǒng)處理后直接排放. 某廠現(xiàn)有4個標準水量的A級水池,分別取樣、檢測.多個污水樣本檢測時,既可以逐個化驗,也可以將若干個樣本混合在一起化驗.混合樣本中只要有樣本不達標,則混合樣本的化驗結(jié)果必不達標.若混合樣本不達標,則該組中各個樣本必須再逐個化驗;若混合樣本達標,則原水池的污水直接排放.
現(xiàn)有以下四種方案,
方案一:逐個化驗;
方案二:平均分成兩組化驗;
方案三:三個樣本混在一起化驗,剩下的一個單獨化驗;
方案四:混在一起化驗.
化驗次數(shù)的期望值越小,則方案的越“優(yōu)”.
(Ⅰ) 若
,求2個A級水樣本混合化驗結(jié)果不達標的概率;
(Ⅱ) 若
,現(xiàn)有4個A級水樣本需要化驗,請問:方案一,二,四中哪個最“優(yōu)”?
(Ⅲ) 若“方案三”比“方案四”更“優(yōu)”,求p的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】在數(shù)列{an}中,a1=1,an+1=(n+1)an+(n+1)!. (Ⅰ)求證:數(shù)列
是等差數(shù)列,并求{an}的通項公式;
(Ⅱ)求{an}的前n項和Sn .
查看答案和解析>>
科目: 來源: 題型:
【題目】5支籃球隊進行單循環(huán)比賽(任兩支球隊恰進行一場比賽),任兩支球隊之間勝率都是
.單循環(huán)比賽結(jié)束,以獲勝的場次數(shù)作為該隊的成績,成績按從大到小排名次順序,成績相同則名次相同.有下列四個命題:p1:恰有四支球隊并列第一名為不可能事件;p2:有可能出現(xiàn)恰有兩支球隊并列第一名;p3:每支球隊都既有勝又有敗的概率為
;p4:五支球隊成績并列第一名的概率為
.其中真命題是( )
A.p1 , p2 , p3
B.p1 , p2 , p4
C.p1 , p3 , p4
D.p2 , p3 , p4
查看答案和解析>>
科目: 來源: 題型:
【題目】函數(shù)
,則f(x)在[0,k]的最大值h(k)=( )
A.2ln2﹣2﹣(ln2)3
B.﹣1
C.2ln2﹣2﹣(ln2)2k
D.(k﹣1)ek﹣k3
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)四棱錐P﹣ABCD的底面不是平行四邊形,用平面 α去截此四棱錐,使得截面四邊形是平行四邊形,則這樣的平面α( ) ![]()
A.不存在
B.只有1個
C.恰有4個
D.有無數(shù)多個
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖2,“六芒星”是由兩個全等正三角形組成,中心重合于點O且三組對邊分別平行.點A,B是“六芒星”(如圖1)的兩個頂點,動點P在“六芒星”上(內(nèi)部以及邊界),若
,則x+y的取值范圍是( ) ![]()
A.[﹣4,4]
B.![]()
C.[﹣5,5]
D.[﹣6,6]
查看答案和解析>>
科目: 來源: 題型:
【題目】過雙曲線x2﹣
=1的右支上一點P,分別向圓C1:(x+4)2+y2=4和圓C2:(x﹣4)2+y2=1作切線,切點分別為M,N,則|PM|2﹣|PN|2的最小值為( )
A.10
B.13
C.16
D.19
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com