科目: 來源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)P的直角坐標(biāo)為(1,2),點(diǎn)M的極坐標(biāo)為
,若直線l過點(diǎn)P,且傾斜角為
,圓C以M為圓心,3為半徑. (Ⅰ)求直線l的參數(shù)方程和圓C的極坐標(biāo)方程;
(Ⅱ)設(shè)直線l與圓C相交于A,B兩點(diǎn),求|PA||PB|.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知f(x)=(x2﹣2ax)lnx+2ax﹣
x2 , 其中a∈R.
(1)若a=0,且曲線f(x)在x=t處的切線l過原點(diǎn),求直線l的方程;
(2)求f(x)的極值;
(3)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1 , x2(x1<x2),證明f(x1)+f(x2)<
a2+3a.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C:
的焦距為2,點(diǎn)Q(
,0)在直線l:x=3上.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若O為坐標(biāo)原點(diǎn),P為直線l上一動(dòng)點(diǎn),過點(diǎn)P作直線與橢圓相切點(diǎn)于點(diǎn)A,求△POA面積S的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,底面ABCD是直角梯形,∠ADC=90°,AD∥BC,AB⊥AC,AB=AC=
,點(diǎn)E在AD上,且AE=2ED. ![]()
(Ⅰ)已知點(diǎn)F在BC上,且CF=2FB,求證:平面PEF⊥平面PAC;
(Ⅱ)當(dāng)二面角A﹣PB﹣E的余弦值為多少時(shí),直線PC與平面PAB所成的角為45°?
查看答案和解析>>
科目: 來源: 題型:
【題目】襄陽農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫度與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差x(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 26 | 32 | 26 | 16 |
襄陽農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是不相鄰的2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日這兩組數(shù)據(jù),情根據(jù)12月2日至12月4日的數(shù)據(jù),求y關(guān)于x的線性回歸方程
=
x+
;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過1顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠? 注:
=
=
,
=
﹣
.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知A、B分別在射線CM、CN(不含端點(diǎn)C)上運(yùn)動(dòng),∠MCN=
π,在△ABC中,角A、B、C所對的邊分別是a、b、c. ![]()
(Ⅰ)若a、b、c依次成等差數(shù)列,且公差為2.求c的值;
(Ⅱ)若c=
,∠ABC=θ,試用θ表示△ABC的周長,并求周長的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】半徑為1的球O內(nèi)有一個(gè)內(nèi)接正三棱柱,當(dāng)正三棱柱的側(cè)面積最大時(shí),球的表面積與該正三棱柱的側(cè)面積之差是 .
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com