科目: 來源: 題型:
【題目】如圖,已知A(-2,3),B(-5,0),C(-1,0),△ABC和△A1B1C1關于x軸對稱.
(1)作△ABC關于x軸對稱的△A1B1C1,直接寫出點A1坐標;
(2)在y軸上有一點P使AP+A1P最小,直接寫出點P的坐標;
(3)請直接寫出點A關于直線x=m(直線上各點的橫坐標都為m)對稱的點的坐標.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,OA=OB,點P為△ABO的角平分線的交點,若PN⊥PA交x軸于N,延長OP交AB于M,寫出AO,ON,PM之間的數(shù)量關系,并證明之.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】某小商場以每件20元的價格購進一種服裝,先試銷一周,試銷期間每天的銷量(件)與每件的銷售價x(元/件)如下表:
x(元/件) | 38 | 36 | 34 | 32 | 30 | 28 | 26 |
t(件) | 4 | 8 | 12 | 16 | 20 | 24 | 28 |
假定試銷中每天的銷售量t(件)與銷售價x(元/件)之間滿足一次函數(shù).
(1)試求t與x之間的函數(shù)關系式;
(2)在商品不積壓且不考慮其它因素的條件下,每件服裝的銷售定價為多少時,該小商場銷售這種服裝每天獲得的毛利潤最大?每天的最大毛利潤是多少?(注:每件服裝銷售的毛利潤=每件服裝的銷售價﹣每件服裝的進貨價)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:△ABC中,AB=AC,∠BAC=90°.
(1)如圖(1),CD平分∠ACB交AB于點D,BE⊥CD于點E,延長BE、CA相交于點F,請猜想線段BE與CD的數(shù)量關系,并說明理由.
(2)如圖(2),點F在BC上,∠BFE=
∠ACB,BE⊥FE于點E,AB與FE交于點D,F(xiàn)H∥AC交AB于H,延長FH、BE相交于點G,求證:BE=
FD;
(3)如圖(3),點F在BC延長線上,∠BFE=
∠ACB,BE⊥FE于點E,F(xiàn)E交BA延長線于點D,請你直接寫出線段BE與FD的數(shù)量關系(不需要證明).
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,如圖,已知Rt△DOE,∠DOE=90°,OD=3,點D在y軸上,點E在x軸上,在△ABC中,點A,C在x軸上,AC=5.∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求畫圖(保留作圖痕跡):![]()
(1)將△ODE繞O點按逆時針方向旋轉(zhuǎn)90°得到△OMN(其中點D的對應點為點M,點E的對應點為點N),畫出△OMN;
(2)將△ABC沿x軸向右平移得到△A′B′C′(其中點A,B,C的對應點分別為點A′,B′,C′),使得B′C′與(1)中的△OMN的邊NM重合;
(3)求OE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】一只不透明的箱子里共有3個球,把它們的分別編號為1,2,3,這些球除編號不同外其余都相同.
(1)從箱子中隨機摸出一個球,求摸出的球是編號為1的球的概率;
(2)從箱子中隨機摸出一個球,記錄下編號后將它放回箱子,攪勻后再摸出一個球并記錄下編號,求兩次摸出的球都是編號為3的球的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,BC=15,斜邊AB的垂直平分線與∠CAB的平分線都交BC于D點,則點D到斜邊AB的距離為___________.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】已知在四邊形ABCD中,∠ABC+∠ADC=180°,AB=BC.
(1)如圖1,若∠BAD=90°,AD=2,求CD的長度;
(2)如圖2,點P、Q分別在線段AD、DC上,滿足PQ=AP+CQ,求證:∠PBQ=90°
∠ADC;
(3)如圖3,若點Q運動到DC的延長線上,點P也運動到DA的延長線上時,仍然滿足PQ=AP+CQ,則(2)中的結(jié)論是否成立?若成立,請給出證明過程,若不成立,請寫出∠PBQ與∠ADC的數(shù)量關系,并給出證明過程.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】為迎接“六一”兒童節(jié)的到來,某校學生參加獻愛心捐款活動,隨機抽取該校部分學生的捐款數(shù)進行統(tǒng)計分析,相應數(shù)據(jù)的統(tǒng)計圖如下: ![]()
(1)該樣本的容量是 , 樣本中捐款15元的學生有人;
(2)若該校一共有500名學生,據(jù)此樣本估計該校學生的捐款總數(shù).
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com