科目: 來源: 題型:
【題目】已知∠AOB=90°,OC是∠AOB的平分線,按以下要求解答問題.
(1)將三角板的直角頂點P在射線OC上移動,兩直角邊分別與OA,OB交于M,N,如圖①,求證:PM=PN;
(2)將三角板的直角頂點P在射線OC上移動,一條直角邊與OB交于N,另一條直角邊與射線OA的反向延長線交于點M,并猜想此時①中的結論PM=PN是否成立,并說明理由 .
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】在圖示的方格紙中,(1)畫出△ABC關于MN對稱的圖形△A1B1C1;
(2)說明△A2B2C2是由△A1B1C1經過怎樣的平移得到的?
(3)在直線MN上找一點P,使得PB+PA最短.(不必說明理由).
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,邊AB的長為3,點E,F分別在AD,BC上,連接BE,DF,EF,BD.若四邊形BFDE是菱形,且OE=AE,則邊BC的長為( ) ![]()
A.2 ![]()
B.3 ![]()
C.
![]()
D.6 ![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.
(1)求證:BE=CF;
(2)如果AB=8,AC=6,求AE、BE的長.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,拋物線y=﹣
[(x﹣2)2+n]與x軸交于點A(m﹣2,0)和B(2m+3,0)(點A在點B的左側),與y軸交于點C,連結BC.![]()
(1)求m、n的值;
(2)如圖2,點N為拋物線上的一動點,且位于直線BC上方,連接CN、BN.求△NBC面積的最大值;
(3)如圖3,點M、P分別為線段BC和線段OB上的動點,連接PM、PC,是否存在這樣的點P,使△PCM為等腰三角形,△PMB為直角三角形同時成立?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=10,AD=6,點M為AB上的一動點,將矩形ABCD沿某一直線對折,使點C與點M重合,該直線與AB(或BC)、CD(或DA)分別交于點P、Q![]()
(1)用直尺和圓規(guī)在圖甲中畫出折痕所在直線(不要求寫畫法,但要求保留作圖痕跡)
(2)如果PQ與AB、CD都相交,試判斷△MPQ的形狀并證明你的結論;
(3)設AM=x,d為點M到直線PQ的距離,y=d2 ,
①求y關于x的函數解析式,并指出x的取值范圍;
②當直線PQ恰好通過點D時,求點M到直線PQ的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,DE⊥AD,交AB于點E,AE為⊙O的直徑 ![]()
(1)判斷BC與⊙O的位置關系,并證明你的結論;
(2)求證:△ABD∽△DBE;
(3)若cosB=
,AE=4,求CD.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知:在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點C,D,E三點在同一條直線上,連接BD.圖中的CE、BD有怎樣的大小和位置關系?試證明你的結論.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,O為原點,點A(4,0),點B(0,3),把△ABO繞點B逆時針旋轉,得△A′BO′,點A,O旋轉后的對應點為A′,O′,記旋轉角為α.![]()
(1)如圖①,若α=90°,求AA′的長;
(2)如圖②,若α=120°,求點O′的坐標;
(3)在(Ⅱ)的條件下,邊OA上 的一點P旋轉后的對應點為P′,當O′P+BP′取得最小值時,求點P′的坐標(直接寫出結果即可)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,已知△ABC和△BDE都是等邊三角形.則下列結論:①AE=CD;②BF=BG;③∠AHC=60°;④△BFG是等邊三角形;⑤HB平分∠AHD.其中正確的有( )
![]()
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com