科目: 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,對(duì)角線AC=2
,E為BC邊上一點(diǎn),BC=3BE,將矩形ABCD沿AE所在的直線折疊,B點(diǎn)恰好落在對(duì)角線AC上的B′處,則AB= .![]()
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,把一個(gè)圓錐沿母線OA剪開(kāi),展開(kāi)后得到扇形AOC,已知圓錐的高h(yuǎn)為12cm,OA=13cm,則扇形AOC中
的長(zhǎng)是cm(計(jì)算結(jié)果保留π).![]()
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,正方形ABCD的面積為1,則以相鄰兩邊中點(diǎn)連線EF為邊正方形EFGH的周長(zhǎng)為( )![]()
A.![]()
B.2 ![]()
C.![]()
+1
D.2
+1
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】小明在學(xué)習(xí)過(guò)程中,對(duì)教材中的一個(gè)有趣問(wèn)題做如下探究:
![]()
(習(xí)題回顧)已知:如圖1,在△ABC中,∠ACB=90°,AE是角平分線,CD是高,AE、CD相交于點(diǎn)F.求證:∠CFE=∠CEF;
(變式思考)如圖2,在△ABC中,∠ACB=90°,CD是AB邊上的高,若△ABC的外角∠BAG的平分線交CD的延長(zhǎng)線于點(diǎn)F,其反向延長(zhǎng)線與BC邊的延長(zhǎng)線交于點(diǎn)E,則∠CFE與∠CEF還相等嗎?說(shuō)明理由;
(探究廷伸)如圖3,在△ABC中,在AB上存在一點(diǎn)D,使得∠ACD=∠B,角平分線AE交CD于點(diǎn)F.△ABC的外角∠BAG的平分線所在直線MN與BC的延長(zhǎng)線交于點(diǎn)M.試判斷∠M與∠CFE的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在△ABC中,分別作其內(nèi)角∠ACB與外角∠DAC的角平分線,且兩條角平分線所在的直線交于點(diǎn)E
(1)填空:①如圖1,若∠B=60°,則∠E= ;
②如圖2,若∠B=90°,則∠E= ;
(2)如圖3,若∠B=α,求∠E的度數(shù);
(3)如圖4,仿照(2)中的方法,在(2)的條件下分別作∠EAB與∠ECB的角平分線,且兩條角平分線交于點(diǎn)G,求∠G的度數(shù).
![]()
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在一個(gè)鈍角三角形中,如果一個(gè)角是另一個(gè)角的3倍,這樣的三角形我們稱之為“智慧三角形”.如,三個(gè)內(nèi)角分別為120°,40°,20°的三角形是“智慧三角形”.如圖,∠MON=60°,在射線OM上找一點(diǎn)A,過(guò)點(diǎn)A作AB⊥OM交ON于點(diǎn)B,以A為端點(diǎn)作射線AD,交射線OB于點(diǎn)C.
(1)∠ABO的度數(shù)為_____°,△AOB_____(填“是”或“不是”) “智慧三角形”;
(2)若∠OAC=20°,求證:△AOC為“智慧三角形”;
(3)當(dāng)△ABC為“智慧三角形”時(shí),求∠OAC的度數(shù).
![]()
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,拋物線經(jīng)過(guò)A(﹣1,0),B(5,0),C(0,-
)三點(diǎn).![]()
(1)求拋物線的解析式;
(2)在拋物線的對(duì)稱軸上有一點(diǎn)P,使PA+PC的值最小,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)M為x軸上一動(dòng)點(diǎn),在拋物線上是否存在一點(diǎn)N,使以A,C,M,N四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,求點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點(diǎn)D,E為BC邊的中點(diǎn),連接DE. ![]()
(1)求證:DE與⊙O相切.
(2)若tanC=
,DE=2,求AD的長(zhǎng).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AD⊥BC于點(diǎn)D,E為AB邊上任意一點(diǎn),EF⊥BC于點(diǎn)F,∠1=∠2.求證:DG∥AB.請(qǐng)把證明的過(guò)程填寫完整.
證明:∵AD⊥BC,EF⊥BC( ),
∴∠EFB=∠ADB=90°(垂直的定義)
∴EF∥ ( )
∴∠1= ( )
又∵∠1=∠2(已知)
∴ ( )
∴DG∥AB( )
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com