科目: 來源: 題型:
【題目】為方便市民出行,減輕城市中心交通壓力,長沙市正在修建貫穿星城南北、東西的地鐵1、2號線.已知修建地鐵1號線24千米和2號線22千米共需投資265億元;若1號線每千米的平均造價比2號線每千米的平均造價多0.5億元.
(1)求1號線,2號線每千米的平均造價分別是多少億元?
(2)除1、2號線外,長沙市政府規(guī)劃到2018年還要再建91.8千米的地鐵線網(wǎng).據(jù)預(yù)算,這91.8千米地鐵線網(wǎng)每千米的平均造價是1號線每千米的平均造價的1.2倍,則還需投資多少億元?
查看答案和解析>>
科目: 來源: 題型:
【題目】在1×3的正方形網(wǎng)格格點(diǎn)上放三枚棋子,按圖所示的位置己放置了兩枚棋子,若第三枚棋子隨機(jī)放在其他格點(diǎn)上,則以這三枚棋子所在的格點(diǎn)為頂點(diǎn)的三角形是直角三角形的概率為 . ![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c (a≠0)的對稱軸為直線x=1,與x軸的一個交點(diǎn)坐標(biāo)為 (一1,0),其部分圖象如圖所示,下列結(jié)論:
①4ac<b2;②方程ax2+bx+c=0的兩個根是x1=﹣1,x2=3;③3a+c>0;④當(dāng)y>0時,x的取值范圍是﹣1≤x<3;⑤若(﹣
,y1),(
,y2)是拋物線上兩點(diǎn),則y1<y2 .
其中結(jié)論正確的個數(shù)是( )![]()
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,一個10×10網(wǎng)格,每個小正方形的邊長均為1,每個小正方形的頂點(diǎn)叫格點(diǎn),△ABC的頂點(diǎn)均在格點(diǎn)上.
(1)畫出△ABC關(guān)于直線l的對稱的△A1B1C1.
(2)畫出△ABC關(guān)于點(diǎn)P的中心對稱圖形△A2B2C2.
(3)△A1B1C1與△A2B2C2組成的圖形_______________(是或否)軸對稱圖形,如果是軸對稱圖形,請畫出對稱軸.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1在正方形ABCD的外側(cè)作兩個等邊三角形ADE和DCF,連接AF,BE.
![]()
![]()
(圖1) (圖2) (備用圖)
(1)請判斷:AF與BE的數(shù)量關(guān)系是_____________,位置關(guān)系______________;
(2)如圖2,若將條件“兩個等邊三角形ADE和DCF”變?yōu)椤皟蓚等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)問中的結(jié)論是否仍然成立?請作出判斷并給予證明;
(3)若三角形ADE和DCF為一般三角形,且AE=DF,ED=FC,第(1)問中的結(jié)論都能成立嗎?請直接寫出你的判斷.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是⊙D的直徑,AD切⊙D于點(diǎn)A,EC=CB.則下列結(jié)論:①BA⊥DA; ②OC∥AE;③∠COE=2∠CAE;④OD⊥AC.一定正確的個數(shù)有( )![]()
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
科目: 來源: 題型:
【題目】(1) 定義:直角三角形兩直角邊的平方和等于斜邊的平方.如:直角三角形的直角邊分別為3、4,則斜邊的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接寫出BC2=__________________.
(2)應(yīng)用:已知正方形ABCD的邊長為4,點(diǎn)P為AD邊上的一點(diǎn),AP=
,請利用“兩點(diǎn)之間線段最短”這一原理,在線段AC上畫出一點(diǎn)M,使MP+MD最小,并直接寫出最小值的平方為_____________.
![]()
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AD平分∠BAC,∠EAD=∠EDA.
(1)∠EAC與∠B相等嗎?為什么?
(2)若∠B=50°,∠CAD︰∠E=1︰3,求∠E的度數(shù).
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=﹣x2﹣2x+3與x軸交于點(diǎn)A,B,把拋物線與線段AB圍成的圖形記為C1 , 將Cl繞點(diǎn)B中心對稱變換得C2 , C2與x軸交于另一點(diǎn)C,將C2繞點(diǎn)C中心對稱變換得C3 , 連接C,與C3的頂點(diǎn),則圖中陰影部分的面積為( ) ![]()
A.32
B.24
C.36
D.48
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=x2﹣3x+
與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,點(diǎn)D是直線BC下方拋物線上一點(diǎn),過點(diǎn)D作y軸的平行線,與直線BC相交于點(diǎn)E ![]()
(1)求直線BC的解析式;
(2)當(dāng)線段DE的長度最大時,求點(diǎn)D的坐標(biāo).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com