科目: 來源: 題型:
【題目】如圖,在ABCD中,E是AD上一點(diǎn),延長(zhǎng)CE到點(diǎn)F,使∠FBC=∠DCE. ![]()
(1)求證:∠D=∠F;
(2)用直尺和圓規(guī)在AD上作出一點(diǎn)P,使△BPC∽△CDP(保留作圖的痕跡,不寫作法).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,反比例函數(shù)y=
的圖象與一次函數(shù)y=kx+b的圖象交于A,B兩點(diǎn),點(diǎn)A的坐標(biāo)為(2,6),點(diǎn)B的坐標(biāo)為(n,1). ![]()
(1)求反比例函數(shù)與一次函數(shù)的表達(dá)式;
(2)點(diǎn)E為y軸上一個(gè)動(dòng)點(diǎn),若S△AEB=10,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】小明騎單車上學(xué),當(dāng)他騎了一段路時(shí),想起要買某本書,于是又折回到剛經(jīng)過的某書店,買到書后繼續(xù)去學(xué)校.以下是他本次上學(xué)所用的時(shí)間與路程的關(guān)系示意圖.
根據(jù)圖中提供的信息回答下列問題:
(1)小明家到學(xué)校的路程是多少米?
(2)在整個(gè)上學(xué)的途中哪個(gè)時(shí)間段小明騎車速度最快,最快的速度是多少米/分?
(3)小明在書店停留了多少分鐘?
(4)本次上學(xué)途中,小明一共行駛了多少米?一共用了多少分鐘?
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】“校園安全”受到全社會(huì)的廣泛關(guān)注,信豐縣某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了如圖所示的兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題
(1)接受問卷調(diào)查的學(xué)生共有 人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形圓心角是 度;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該中學(xué)共有學(xué)生1200人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù).
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,Rt△ABC的直角邊AC在x軸上,∠ACB=90°,AC=1,反比例函數(shù)
(k>0)的圖象經(jīng)過BC邊的中點(diǎn)D(3,1).
(1)求這個(gè)反比例函數(shù)的表達(dá)式;
(2)若△ABC與△EFG成中心對(duì)稱,且△EFG的邊FG在y軸的正半軸上,點(diǎn)E在這個(gè)函數(shù)的圖象上.
①求OF的長(zhǎng);
②連接AF,BE,證明四邊形ABEF是正方形.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】在數(shù)學(xué)興趣小組活動(dòng)中,小明進(jìn)行數(shù)學(xué)探究活動(dòng),將邊長(zhǎng)為
的正方形ABCD與邊長(zhǎng)為2的正方形AEFG按圖1位置放置,AD與AE在同一直線上,AB與AG在同一直線上.
(1)小明發(fā)現(xiàn)DG⊥BE,請(qǐng)你幫他說明理由;
(2)如圖2,小明將正方形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)B恰好落在線段DG上時(shí),請(qǐng)你幫他求出此時(shí)BE的長(zhǎng).
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】圖中是拋物線拱橋,P處有一照明燈,水面OA寬4m,從O、A兩處觀測(cè)P處,仰角分別為α、β,且tanα=
,tan
,以O(shè)為原點(diǎn),OA所在直線為x軸建立直角坐標(biāo)系. ![]()
(1)求點(diǎn)P的坐標(biāo);
(2)水面上升1m,水面寬多少(
取1.41,結(jié)果精確到0.1m)?
查看答案和解析>>
科目: 來源: 題型:
【題目】小明遇到下面的問題:求代數(shù)式
的最小值并寫出取到最小值時(shí)的x值.經(jīng)過觀察式子結(jié)構(gòu)特征,小明聯(lián)想到可以用解一元二次方程中的配方法來解決問題,具體分析過程如下:
,所以,當(dāng)x=1 時(shí),代數(shù)式有最小值是-4.
(1)請(qǐng)你用上面小明思考問題的方法解決下面問題.
①
的最小值是_______;②求
的最小值.
(2)小明受到上面問題的啟發(fā),自己設(shè)計(jì)了一個(gè)問題,并給出解題過程及結(jié)論如下:
問題:當(dāng)x為實(shí)數(shù)時(shí),求
的最小值.
解:
,∴原式有最小值是5.
請(qǐng)你判斷小明的結(jié)論是否正確,并簡(jiǎn)要說明理由.
判斷:__________,理由:____________________________________________________.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.求:
![]()
(1)∠BAE的度數(shù);
(2)∠DAE的度數(shù);
(3)探究:小明認(rèn)為如果條件∠B=70°,∠C=30°改成∠B-∠C=40°,也能得出∠DAE的度數(shù)?若能,請(qǐng)你寫出求解過程;若不能,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,用火柴棒按以下方式搭小魚,是課本上多次出現(xiàn)的數(shù)學(xué)活動(dòng).
![]()
(1)搭4條小魚需要火柴棒_________根;
(2)搭n條小魚需要火柴棒_____________根;
(3)若搭n朵某種小花需要火柴棒(3n+44)根,現(xiàn)有一堆火柴棒,可以全部用上搭出m條小魚,也可以全部用上搭出m朵小花,求m的值及這堆火柴棒的數(shù)量.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com