科目: 來源: 題型:
【題目】在△ABC中,BD,CE分別是∠ABC,∠ACB平分線,BD,CE相交于點P.
(1)如圖1,如果∠A=60°,∠ACB=90°,則∠BPC= ;
(2)如圖2,如果∠A=60°,∠ACB不是直角,請問在(1)中所得的結論是否仍然成立?若成立,請證明:若不成立,請說明理由.
(3)小月同學在完成(2)之后,發(fā)現(xiàn)CD、BE、BC三者之間存在著一定的數(shù)量關系,于是她在邊CB上截取了CF=CD,連接PF,可證△CDP≌△CFP,請你寫出小月同學發(fā)現(xiàn),并完成她的說理過程.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,已知點A(3,0),B(0,4),將△BOA繞點A按順時針方向旋轉得△CDA,連接OD.當∠DOA=∠OBA時,直線CD的解析式為________
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀材料后解決問題:
計算:(2+1)(22+1)(24+1)(28+1).
經(jīng)過觀察,小明發(fā)現(xiàn)如果將原式進行適當?shù)淖冃魏罂梢猿霈F(xiàn)特殊的結構,進而可以應用平方差公式解決問題,具體解法如下:
(2+1)(22+1)(24+1)(28+1)
=(2﹣1)(2+1)(22+1)(24+1)(28+1)
=(22﹣1)(22+1)(24+1)(28+1)
=(24﹣1)(24+1)(28+1)
=(28﹣1)(28+1)
=216﹣1
請你根據(jù)以上解決問題的方法,試著解決:
(3+1)(32+1)(34+1)(38+1)…(364+1)=__
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,∠AOB=45°,點M,N在邊OA上,OM=3,ON=7,點P是直線OB上的點,要使點P,M,N構成等腰三角形的點P有( )個.
![]()
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)如圖1,△ABC中,∠C=90°,AB的垂直平分線交AC于點D,連接BD.若AC=2,BC=1,求△BCD的周長為;
(2)O為正方形ABCD的中心,E為CD邊上一點,F(xiàn)為AD邊上一點,且△EDF的周長等于AD的長.
①在圖2中求作△EDF(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡);
②在圖3中補全圖形,求∠EOF的度數(shù);
③若
, 求
的值![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠A=110°,∠B=85°將△BMN沿著MN翻折,得到△FMN,若MF∥AD,F(xiàn)N∥DC,則∠C的度數(shù)為( 。
![]()
A. 70° B. 80° C. 90° D. 100°
查看答案和解析>>
科目: 來源: 題型:
【題目】已知在△ABC中,AB=AC。
![]()
(1)若D為AC的中點,BD把三角形的周長分為24cm和30cm兩部分,求△ABC三邊的長;
(2)若D為AC上一點,試說明AC>
(BD+DC)。
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,定義直線x=m與雙曲線yn=
的交點Am , n(m、n為正整數(shù))為“雙曲格點”,雙曲線yn=
在第一象限內的部分沿著豎直方向平移或以平行于x軸的直線為對稱軸進行翻折之后得到的函數(shù)圖象為其“派生曲線”.![]()
(1)①“雙曲格點”A2 , 1的坐標為 ;②若線段A4 , 3A4 , n的長為1個單位長度,則n= ;
(2)圖中的曲線f是雙曲線y1=
的一條“派生曲線”,且經(jīng)過點A2 , 3 , 則f的解析式為y=
(3)畫出雙曲線y3=
的“派生曲線”g(g與雙曲線y3=
不重合),使其經(jīng)過“雙曲格點”A2 , a、A3 , 3、A4 , b .
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)閱讀并回答:
科學實驗證明,平面鏡反射光線的規(guī)律是:射到平面鏡上的光線和被反射出的光線與平面鏡所夾的角相等.如圖1,一束平行光線AB與DE射向一個水平鏡面后被反射,此時∠1=∠2,∠3=∠4.
由條件可知:∠1與∠3的大小關系是 ,理由是 ;∠2與∠4的大小關系是 ;
反射光線BC與EF的位置關系是 ,理由是 ;
![]()
(2)解決問題:
①如圖2,一束光線m射到平面鏡a上,被a反射到平面鏡b上,又被b鏡反射,若b反射出的光線n平行于m,且∠1=35°,則∠2= ,∠3= ;
在①中,若∠1=40°,則∠3= ,
由①②請你猜想:當∠3= 時,任何射到平面鏡a上的光線m經(jīng)過平面鏡a和b的兩次反射后,入射光線m與反射光線n總是平行的?請說明理由.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com