科目: 來源: 題型:
【題目】自學(xué):如圖1,△ABC中,D是BC邊上一點,則△ABD與△ADC有一個相同的高,它們的面積之比等于相應(yīng)的底之比,記為
=
.
(△ABD,△ADC的面積分別用記號S△ABD , S△ADC表示)![]()
(1)心得:如圖1,若BD=
DC,則S△ABD:S△ADC=
(2)成長:如圖2,△ABC中,M,N分別是AB,AC邊上一點,且有AM:MB=2:1,AN:NC=1:1,則△AMN與△ABC的面積比為 .
(3)巔峰:如圖3,△ABC中,P,Q,R分別是BC,CA,AB邊上的點,且AP,BQ,CR相交于點O,現(xiàn)已知△BPO,△PCO,△COQ,△AOR的面積依次為40,30,35,84,求△ABC的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】某制造企業(yè)有一座對生產(chǎn)設(shè)備進行水循環(huán)冷卻的冷卻塔,冷卻塔的頂部有一個進水口,3小時恰好可以注滿這座空塔,底部有一個出水口,7小時恰好可以放完滿塔的水.為了保證安全,塔內(nèi)剩余水量不得少于全塔水量的
,出水口一直打開,保證水的循環(huán),進水口根據(jù)水位情況定時對冷卻塔進行補水.假設(shè)每次恰好在剩余水量為滿水量的m倍時開始補水,補滿后關(guān)閉進水口.
(1)當m=
時,請問:兩次補水之間相隔多長時間?每次補水需要多長時間?
(2)能否找到適當?shù)膍值,使得兩次補水的間隔時間和每次的補水時間一樣長?如果能,請求出m值;如果不能,請你分析兩次補水的間隔時間和每次的補水時間之間的數(shù)量關(guān)系,并表示出來.
查看答案和解析>>
科目: 來源: 題型:
【題目】某汽車專賣店銷售A,B兩種型號的新能源汽車.上周售出1輛A型車和3輛B型車,銷售額為96萬元;本周已售2輛A型車和1輛B型車,銷售額為62萬元.
(1)求每輛A型車和B型車的售價各多少萬元.
(2)甲公司擬向該店購買A,B兩種型號的新能源汽車共6輛,購車費不少于130萬元,且不超過140萬元. 則有哪幾種購車方案?
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,∠ACB=90,AC=BC=1,E、F為線段AB上兩動點,且∠ECF=45°,過點E、F分別作BC、AC的垂線相交于點M,垂足分別為H、G.現(xiàn)有以下結(jié)論:
①AB=
; ②當點E與點B重合時,MH=
; ③AF+BE=EF;④F、E分別不與端點A、B重合時,總有S△AGF+ S△EBH= S△FEM,其中正確結(jié)論為--------------------------( )![]()
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知CD⊥DA,DA⊥AB,∠1=∠2.試說明DF∥AE.請你完成下列填空,把證明過程補充完整.
證明:∵ ,
∴∠CDA=90°,∠DAB=90° ( ).
∴∠1+∠3=90°,∠2+∠4=90°.
又∵∠1=∠2,
∴ ( ),
∴DF∥AE ( ).
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】在下列網(wǎng)格中建立平面直角坐標系如圖,每個小正方形的邊長均為1個單位長度.已知A(1,1)、B(3,4)和C(4,2).
(1)在圖中標出點A、B、C.
(2)將點C向下平移3個單位到D點,將點A先向左平移3個單位,再向下平移1個單位到E點,在圖中標出D點和E點.
(3)求△EBD的面積S△EBD.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】在一次期中考試中,
(1)一個班級有甲、乙、丙三名學(xué)生,分別得到70分、80分、90分.這三名同學(xué)的平均得分是多少?
(2)一個班級共有40名學(xué)生,其中5人得到70分,20人得到80分,15人得到90分.求班級的平均得分.
(3)一個班級中,20%的學(xué)生得到70分,50%的學(xué)生得到80分,30%的學(xué)生得到90分.求班級的平均得分.
(4)中考的各學(xué)科的分值依次為:數(shù)學(xué)150分,語文150分,物理100分,政治50分,歷史50分,合計總分為500分. 在這次期中考試中,各門學(xué)科的總分都設(shè)置為100分,現(xiàn)已知甲、乙兩名學(xué)生的得分如下表:
學(xué)科 | 數(shù)學(xué) | 語文 | 物理 | 政治 | 歷史 |
甲 | 80 | 90 | 80 | 80 | 70 |
乙 | 80 | 80 | 70 | 80 | 95 |
你認為哪名同學(xué)的成績更理想,寫出你的理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】本市新建一座圓形人工湖,為測量該湖的半徑,小杰和小麗沿湖邊選取A,B,C三根木柱,使得A,B之間的距離與A,C之間的距離相等,并測得BC長為120米,A到BC的距離為4米,如圖所示. ![]()
(1)請你幫他們求出該湖的半徑;
(2)如果在圓周上再另取一點P,建造一座連接B,C,P三點的三角形藝術(shù)橋,且△BCP為直角三角形,問:這樣的P點可以有幾處?如何找到?
查看答案和解析>>
科目: 來源: 題型:
【題目】在矩形ABCD中,AB=3,將△ABD沿對角線BD對折,得到△EBD,DE與BC交于點 F,∠ADB=30°,則EF=---------------------------------------------( )
![]()
A. 3
B. 2
C. 3 D. ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com