科目: 來(lái)源: 題型:
【題目】某學(xué)校準(zhǔn)備組織部分學(xué)生到少年宮參加活動(dòng),陳老師從少年宮帶回來(lái)兩條信息:
信息一:按原來(lái)報(bào)名參加的人數(shù),共需要交費(fèi)用320元,如果參加的人數(shù)能夠增加到原來(lái)人數(shù)的2倍,就可以享受優(yōu)惠,此時(shí)只需交費(fèi)用480元;
信息二:如果能享受優(yōu)惠,那么參加活動(dòng)的每位同學(xué)平均分?jǐn)偟馁M(fèi)用比原來(lái)少4元.
根據(jù)以上信息,原來(lái)報(bào)名參加的學(xué)生有多少人?
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】填空完成推理過(guò)程:
如圖,AD⊥BC于點(diǎn)D,EG⊥BC于點(diǎn)G,AD平分∠BA C. 求證: ∠E=∠1.
證明: ∵AD⊥BC于點(diǎn)D,EG⊥BC于點(diǎn)G,(已知)
∴∠ADC=∠EGC=90°,(垂直的定義)
∴AD∥EG,( )
∴∠1= ,( )
∠E=∠3,(兩直線平行,同位角相等)
∵AD平分∠BAC,(已知)
∴∠2=∠3,( )
∴∠E=∠1.(等量代換)
![]()
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,點(diǎn)O為等邊三角形ABC內(nèi)一點(diǎn),連接OA,OB,OC,以O(shè)B為一邊作∠OBM=60°,且BO=BM,連接CM,OM.
(1)判斷AO與CM的大小關(guān)系并證明;
(2)若OA=8,OC=6,OB=10,判斷△OMC的形狀并證明.
![]()
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】(10分)如圖所示,某公路一側(cè)有A、B兩個(gè)送奶站,C為公路上一供奶站,CA和CB為供奶路線,現(xiàn)已測(cè)得AC=8km,BC=15km,AB=17km,∠1=30°,若有一人從C處出發(fā),沿公路邊向右行走,速度為2.5km/h,問(wèn):多長(zhǎng)時(shí)間后這個(gè)人距B送奶站最近?
![]()
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn) B(m,n) 在第一象限,m,n 均為整數(shù),且滿足n =
.
(1) 求點(diǎn) B 的坐標(biāo);
(2) 將線段 OB 向下平移 a 個(gè)單位后得到線段 O′B′,過(guò)點(diǎn) B′作 B′C⊥y 軸于點(diǎn) C,若 3CO=2CO′,求a 的值;
(3) 過(guò)點(diǎn) B 作與 y 軸平行的直線 BM,點(diǎn) D 在 x 軸上,點(diǎn) E 在 BM 上,點(diǎn) D 從 O 點(diǎn)出發(fā)以每秒鐘 3個(gè)單位長(zhǎng)度的速度沿 x 軸向右運(yùn)動(dòng),同時(shí)點(diǎn) E 從 B 點(diǎn)出發(fā)以每秒鐘 2 個(gè)單位長(zhǎng)度的速度沿BM 向下運(yùn)動(dòng),在點(diǎn) D,E 運(yùn)動(dòng)的過(guò)程中,若直線 OE,BD 相交于點(diǎn) G,且 5≤S△OGB≤10,則點(diǎn)G 的橫坐標(biāo) xG的取值范圍是 .
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖①,矩形ABCD的對(duì)角線AC,BD交于點(diǎn)O,過(guò)點(diǎn)D作DP∥OC,且DP=OC,連接CP.
(1)判斷四邊形CODP的形狀并說(shuō)明理由;
(2)如圖②,如果題目中的矩形變?yōu)榱庑,判斷四邊?/span>CODP的形狀并說(shuō)明理由;
(3)如圖③,如果題目中的矩形變?yōu)檎叫危袛嗨倪呅?/span>CODP的形狀并說(shuō)明理由.
![]()
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點(diǎn)A(m,﹣2).![]()
(1)求反比例函數(shù)的解析式;
(2)觀察圖象,直接寫(xiě)出正比例函數(shù)值大于反比例函數(shù)值時(shí)自變量x的取值范圍;
(3)若雙曲線上點(diǎn)C(2,n)沿OA方向平移
個(gè)單位長(zhǎng)度得到點(diǎn)B,判斷四邊形OABC的形狀并證明你的結(jié)論.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,∠CAE是△ABC的外角,AD平分∠EAC,且AD∥BC.過(guò)點(diǎn)C作CG⊥AD,垂足為G,AF是BC邊上的中線,連接FG.
(1)求證:AC=FG;
(2)當(dāng)AC⊥FG時(shí),△ABC應(yīng)是怎樣的三角形?為什么?
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com