科目: 來源: 題型:
【題目】在如圖的方格中,每個小正方形的邊長都為1,△ABC的頂點均在格點上.在建立平面直角坐標系后,點B的坐標為(﹣1,2).
(1)把△ABC向下平移8個單位后得到對應的△A1B1C1,畫出△A1B1C1;
(2)畫出與△A1B1C1關于y軸對稱的△A2B2C2;
(3)若點P(a,b)是△ABC邊上任意一點,P2是△A2B2C2邊上與P對應的點,寫出P2的坐標為 ;
(4)試在y軸上找一點Q(在圖中標出來),使得點Q到B2、C2兩點的距離之和最小,并求出QB2+QC2的最小值.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):如圖1,△ACB和△DCE均為等邊三角形,當△DCE旋轉(zhuǎn)至點A,D,E在同一直線上,連接BE.
填空:① ∠AEB的度數(shù)為_______;②線段AD、BE之間的數(shù)量關系是______.
(2)拓展研究:
如圖2,△ACB和△DCE均為等腰三角形,且∠ACB=∠DCE=90°,點A、D、E在同一直線上,若AE=15,DE=7,求AB的長度.
(3)探究發(fā)現(xiàn):
圖1中的△ACB和△DCE,在△DCE旋轉(zhuǎn)過程中當點A,D,E不在同一直線上時,設直線AD與BE相交于點O,試在備用圖中探索∠AOE的度數(shù),直接寫出結果,不必說明理由.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】小明同學在做作業(yè)時,遇到這樣一道幾何題:
已知:如圖1,l1∥l2∥l3,點A、M、B分別在直線l1,l2,l3上,MC平分∠AMB,∠1=28°,∠2=70°.求:∠CMD的度數(shù).
小明想了許久沒有思路,就去請教好朋友小堅,小堅給了他如圖2所示的提示:
![]()
請問小堅的提示中①是∠ ,④是∠ .
理由②是: ;
理由③是: ;
∠CMD的度數(shù)是 °.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,平面直角坐標系中,直線AB:
交y軸于點A,交x軸于點B,過點E(2,0)作x軸的垂線EF交AB于點D,點P是垂線EF上一點,且S△ADP=2,以PB為邊在第一象限作等腰Rt△BPC,則點C的坐標為_________.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】西瓜經(jīng)營戶以2元/千克的價格購進一批小型西瓜,以3元/千克的價格出售,每天可售出200千克.為了促銷,該經(jīng)營戶決定降價銷售.經(jīng)調(diào)查發(fā)現(xiàn),這種小型西瓜每降價0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元,為了減少庫存,該經(jīng)營戶要想每天盈利200元,應將每千克小型西瓜的售價降低( 。┰
A.0.2或0.3
B.0.4
C.0.3
D.0.2
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,圓桌正上方的燈泡(看作一個點)發(fā)出的光線照射桌面后,在地面上形成陰影.已知桌面的直徑為1.2 m,桌面距離地面1 m.若燈泡距離地面3 m,則地面上陰影部分的面積為 ( )
![]()
A. 0.36πm2 B. 0.81πm2 C. 2πm2 D. 3.24πm2
查看答案和解析>>
科目: 來源: 題型:
【題目】為豐富居民業(yè)余生活,某居民區(qū)組建籌委會,該籌委會動員居民自愿集資建立一個書刊閱覽室.經(jīng)預算,一共需要籌資30 000元,其中一部分用于購買書桌、書架等設施,另一部分用于購買書刊.
(1)籌委會計劃,購買書刊的資金不少于購買書桌、書架等設施資金的3倍,問最多用多少資金購買書桌、書架等設施?
(2)經(jīng)初步統(tǒng)計,有200戶居民自愿參與集資,那么平均每戶需集資150元.鎮(zhèn)政府了解情況后,贈送了一批閱覽室設施和書籍,這樣,只需參與戶共集資20 000元.經(jīng)籌委會進一步宣傳,自愿參與的戶數(shù)在200戶的基礎上增加了a%(其中a>0).則每戶平均集資的資金在150元的基礎上減少了
a%,求a的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知一次函數(shù)y=kx+7的圖像經(jīng)過點A(2,3).
(1)求k的值;
(2)判斷點B(-1,8),C(3,1)是否在這個函數(shù)的圖像上,并說明理由;
(3)當-3<x<-1時,求y的取值范圍.
【答案】(1)k=-2(2)點B不在,點C在,(3)9<y<13
【解析】
試題分析:(1)把點A(2,3)代入y=kx+7即可求出k的值;(2)點B(-1,8),C(3,1)的橫坐標代入函數(shù)解析式驗證即可;(3)根據(jù)x的取值范圍,即可求出y的取值范圍.
試題解析:(1)把點A(2,3)代入y=kx+7得:k=-2
(2)當x=-1時,y=-2×(-1)+7=9
∵9≠8∴點B不在拋物線上.
當x=3時,y=-2×3+7=1
∴點C在拋物線上
(3)當x=-3時,y=13,當x=-,1時,y=9,所以9<y<13
考點:一次函數(shù).
【題型】解答題
【結束】
24
【題目】順豐快遞公司派甲、乙兩車從A地將一批物品勻速運往B地,甲出發(fā)0.5h后乙開始出發(fā),結果比甲早1(h)到達B地,如圖,線段OP、MN分別表示甲、乙兩車離A地的距離S(km)與時間t(h)的關系,a表示A、B兩地之間的距離.請結合圖中的信息解決如下問題:
![]()
(1)分別計算甲、乙兩車的速度及a的值;
(2)乙車到達B地后以原速立即返回,請問甲車到達B地后以多大的速度立即勻速返回,才能與乙車同時回到A地?并在圖中畫出甲、乙兩車在返回過程中離A地的距離S(km)與時間t(h)的函數(shù)圖象.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,∠BAC與∠CBE的平分線相交于點P,BE=BC,PB與CE交于點H,PG∥AD交BC于F,交AB于G,下列結論:①GA=GP;②∠DCP=45°;③BP垂直平分CE;④GF+ FC =GA;其中正確的判斷有______________.(填序號)
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在所給正方形網(wǎng)格(每個小網(wǎng)格的邊長是1)圖中完成下列各題.
(1)格點△ABC(頂點均在格點上)的面積=_________;
![]()
(2)畫出格點△ABC關于直線DE對稱的△A1B1C1;
(3)在DE上畫出點P,使PB+PC最小,并求出這個最小值.
【答案】(1)面積等于5(2)圖形見解析(3)最小值是根號17
【解析】試題分析:(1)利用勾股定理求出三角形邊長,并證明是直角三角形求面積.(2)畫出A,B,C的對稱點A1,B2,C3,連接三角形.(3)利用對稱利用兩點之間直線最短求最小值.
試題解析:
(1)分別利用勾股定理求得AC=2
,AB=
,BC=
,
,所以∠ACB=90°,面積等于
=5.
(2)畫出A,B,C的對稱點A1,B2,C3,連接三角形.如下圖.
![]()
(3)作B點對稱B’,連接B’C交DE于P,B’P+PC=BP+CP,所以使PB+PC最小.
利用勾股定理B’C=
,
所以最小值是根號17.
![]()
點睛:平面上最短路徑問題
(1)歸于“兩點之間的連線中,線段最短”.凡屬于求“變動的兩線段之和的最小值”時,大都應用這一模型.
(2)歸于“三角形兩邊之差小于第三邊”.凡屬于求“變動的兩線段之差的最大值”時,大都應用這一模型.
(3)平面圖形中,直線同側兩點到直線上一點距離之和最短問題.
![]()
【題型】解答題
【結束】
23
【題目】已知一次函數(shù)y=kx+7的圖像經(jīng)過點A(2,3).
(1)求k的值;
(2)判斷點B(-1,8),C(3,1)是否在這個函數(shù)的圖像上,并說明理由;
(3)當-3<x<-1時,求y的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com