科目: 來源: 題型:
【題目】在四邊形ABCD中,E、F分別是AD、BC的中點,G、H分別是BD、AC的中點,當(dāng)AB、CD滿足什么條件時,四邊形EGFH是菱形?請證明你的結(jié)論.(提示:過點B作BM∥AD交EG的延長線于點M,證明EG//AB且EG=
AB)
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】何老師安排喜歡探究問題的小明解決某個問題前,先讓小明看了一個有解答過程的例題.
例:若m2+2mn+2n2﹣6n+9=0,求m和n的值.
解:∵m2+2mn+2n2﹣6n+9=0
∴m2+2mn+n2+n2﹣6n+9=0
∴(m+n)2+(n﹣3)2=0
∴m+n=0,n﹣3=0∴m=﹣3,n=3
為什么要對2n2進(jìn)行了拆項呢?
聰明的小明理解了例題解決問題的方法,很快解決了下面兩個問題.相信你也能很好的解決下面的這兩個問題,請寫出你的解題過程..
解決問題:
(1)若x2﹣4xy+5y2+2y+1=0,求xy的值;
(2)已知a、b、c是△ABC的三邊長,滿足a2+b2=10a+12b﹣61,c是△ABC中最短邊的邊長,且c為整數(shù),那么c可能是哪幾個數(shù)?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知點
是雙曲線
在第三象限分支上的一個動點,連接
并延長交另一分支于點
,以
為邊作等邊三角形
,點
在第四象限內(nèi),且隨著點
的運動,點
的位置也在不斷變化,但點
始終在雙曲線
上運動,則
的值是_______________.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀理解題:
定義:如果一個數(shù)的平方等于-1,記為i2=-1,這個數(shù)i叫做虛數(shù)單位,把形如a+bi(a,b為實數(shù))的數(shù)叫做復(fù)數(shù),其中a叫這個復(fù)數(shù)的實部,b叫做這個復(fù)數(shù)的虛部,它的加、減,乘法運算與整式的加、減、乘法運算類似.
例如計算:(2-i)+(5+3i)=(2+5)+(-1+3)i=7+2i;
(1+i)×(2-i)=1×2-i+2×i-i2=2+(-1+2)i+1=3+i;
根據(jù)以上信息,完成下列問題:
(1)填空:i3= ,i4= ;
(2)計算:(1+i)×(3-4i);
(3)計算:i+i2+i3+…+i2018.
查看答案和解析>>
科目: 來源: 題型:
【題目】射擊隊為從甲、乙兩名運動員中選拔一人參加比賽,對他們進(jìn)行了六次測試,測試成績?nèi)缦卤恚▎挝唬涵h(huán)):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 平均成績 | 中位數(shù) | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 | 9 | ① |
乙 | 10 | 7 | 10 | 10 | 9 | 8 | ② | 9.5 |
(1)完成表中填空① ;② ;
(2)請計算甲六次測試成績的方差;
(3)若乙六次測試成績方差為
,你認(rèn)為推薦誰參加比賽更合適,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】推理填空:如圖,已知∠B=∠CGF,∠DGF=∠F,求證∠B+∠F=180°.
證明:∵∠B= (已知),
∴AB∥C( ),
∵∠DGF= (已知),
∴CD∥EF( ),
∴AB∥ ( )
∴∠B+ =180°( ).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,BC∥OA,∠B=∠A=100°,點E、F在BC上,OE平分∠BOF,且∠FOC=∠AOC,下列結(jié)論中正確的是___________:
![]()
①OB∥AC ②∠EOC=45°
③∠OCB:∠OFB=1:3 ④若∠OEB=∠OCA,則∠OCA=60°
查看答案和解析>>
科目: 來源: 題型:
【題目】探究證明:
(1)如圖1,在△ABC中,AB=AC,點E是BC上的一個動點,EG⊥AB,EF⊥AC,CD⊥AB,點G,F(xiàn),D分別是垂足.求證:CD=EG+EF;
猜想探究:
(2)如圖2,在△ABC中,AB=AC,點E是BC的延長線上的一個動點,EG⊥AB于G,EF⊥AC交AC延長線于F,CD⊥AB于D,直接猜想CD、EG、EF之間的關(guān)系為 CD=EG﹣EF ;
問題解決:
(3)如圖3,邊長為10的正方形ABCD的對角線相交于點O、H在BD上,且BH=BC,連接CH,點E是CH上一點,EF⊥BD于點F,EG⊥BC于點G,則EF+EG= .
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com