科目: 來源: 題型:
【題目】已知:如圖,在ABCD中,E,F(xiàn)分別是邊AD,BC上的點,且AE=CF,直線EF分別交BA的延長線、DC的延長線于點G,H,交BD于點O.
(1)求證:△ABE≌△CDF;
(2)連接DG,若DG=BG,則四邊形BEDF是什么特殊四邊形?請說明理由.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,分別以點A和點B為圓心,大于
AB的長為半徑畫弧,兩弧相交于點M,N,作直線MN,交BC于點D,連接AD.若△ADC的周長為10,AB=7,則△ABC的周長為 .
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】對于平面直角坐標(biāo)系xOy中的點P(a,b),若點P′的坐標(biāo)為(a+kb,ka+b)(其中k為常數(shù),且k≠0),則稱點P′為點P的“k屬派生點”.
例如:P(1,4)的“2屬派生點”為P′(1+2×4,2×1+4),即P′(9,6).
(1)點P(-1,6)的“2屬派生點”P′的坐標(biāo)為_____________;
(2)若點P的“3屬派生點”P′的坐標(biāo)為(6,2),則點P的坐標(biāo)___________;
(3)若點P在x軸的正半軸上,點P的“k屬派生點”為P′點,且線段PP′的長度為線段OP長度的2倍,求k的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,過點A(2,0)的兩條直線l1,l2分別交y軸于點B,C,其中點B在原點上方,點C在原點下方,已知AB=
.
(1)求點B的坐標(biāo);
(2)若△ABC的面積為4,求直線l2的解析式.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】射陽縣實驗初中為了解全校學(xué)生上學(xué)期參加社區(qū)活動的情況,學(xué)校隨機調(diào)查了本校50名學(xué)生參加社區(qū)活動的次數(shù),并將調(diào)查所得的數(shù)據(jù)整理如下:
![]()
參加社區(qū)活動次數(shù)的頻數(shù)、頻率分布表
活動次數(shù)x | 頻數(shù) | 頻率 |
0<x≤3 | 10 | 0.20 |
3<x≤6 | a | 0.24 |
6<x≤9 | 16 | 0.32 |
9<x≤12 | 6 | 0.12 |
12<x≤15 | m | b |
15<x≤18 | 2 | n |
根據(jù)以上圖表信息,解答下列問題:
(1)表中a= ,b= ;
(2)請把頻數(shù)分布直方圖補充完整(畫圖后請標(biāo)注相應(yīng)的數(shù)據(jù));
(3)若該校共有1200名學(xué)生,請估計該校在上學(xué)期參加社區(qū)活動超過6次的學(xué)生有多少人?
查看答案和解析>>
科目: 來源: 題型:
【題目】下列命題是真命題的是( 。
A.內(nèi)錯角相等
B.平面內(nèi),過一點有且只有一條直線與已知直線垂直
C.相等的角是對頂角
D.過一點有且只有一條直線與已知直線平行
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖(1),AB=4cm,AC⊥AB于A,BD⊥AB于B,AC=BD=3cm.點P在線段AB上以lcm/s的速度由點A向點B運動,同時,點Q在線段BD上由點B向點D運動.它們運動的時間為t(s).
![]()
(1)若點Q的運動速度與點P的運動速度相等,當(dāng)t=l時,△ACP與△BPQ是否全等?PC與PQ是否垂直?請分別說明理由;
(2)如圖(2),將圖(1)中的“AC上AB于A,BD上AB于B”改為“∠CAB=∠DBA=60
”,其他條件不變.設(shè)點Q的運動速度為x cm/s,是否存在實數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應(yīng)的x、t的值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點A(0,4),B(8,0),C(8,6)三點.
![]()
(1)求△ABC的面積;
(2)如果在第二象限內(nèi)有一點P(m,1),且四邊形ABOP的面積是△ABC的面積的兩倍;求滿足條件的P點的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系內(nèi),已知A(2x,3x+1).
(1)點A在x軸下方,在y軸的左側(cè),且到兩坐標(biāo)軸的距離相等,求x的值;
(2)若x=1,點B在x軸上,且S△OAB=6,求點B的坐標(biāo).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com