科目: 來源: 題型:
【題目】某玩具廠有4個(gè)車間,某周是質(zhì)量檢查周,現(xiàn)每個(gè)車間都原有a(a>0)個(gè)成品,且每個(gè)車間每天都生產(chǎn)b(b>0)個(gè)成品,質(zhì)量科派出若干名檢驗(yàn)員周一、周二檢驗(yàn)其中兩個(gè)車間原有的和這兩天生產(chǎn)的所有成品,然后,周三到周五檢驗(yàn)另外兩個(gè)車間原有的和本周生產(chǎn)的所有成品,假定每名檢驗(yàn)員每天檢驗(yàn)的成品數(shù)相同.
(1)這若干名檢驗(yàn)員1天共檢驗(yàn)多少個(gè)成品?(用含a、b的代數(shù)式表示)
(2)若一名檢驗(yàn)員1天能檢驗(yàn)
b個(gè)成品,則質(zhì)量科至少要派出多少名檢驗(yàn)員?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,將矩形紙片ABCD折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在C′處,折痕為EF,若AB=1,BC=2,則△ABE和△BC′F的周長之和為( 。
![]()
A. 3 B. 4 C. 6 D. 8
查看答案和解析>>
科目: 來源: 題型:
【題目】種植草莓大戶張華現(xiàn)有22噸草莓等待出售,有兩種銷售渠道,一是運(yùn)往省城直接批發(fā)給零售商,二是在本地市場零售,受客觀因素影響,張華每天只能采用一種銷售渠道,而且草莓必須在10天內(nèi)售出(含10天)經(jīng)過調(diào)查分析,這兩種銷售渠道每天銷量及每噸所獲純利潤見右表:
![]()
(1)若一部分草莓運(yùn)往省城批發(fā)給零售商,其余在本地市場零售,請寫出銷售22噸草莓所獲純利潤y(元)與運(yùn)往省城直接批發(fā)零售商的草莓量x(噸)之間的函數(shù)關(guān)系式;
(2)怎樣安排這22噸草莓的銷售渠道,才使張華所獲純利潤最大?并求出最大純利潤.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知y是關(guān)于x的一次函數(shù),且當(dāng)x=3時(shí),y=-2;當(dāng)x=2時(shí),y=-3.
(1)求這個(gè)一次函數(shù)的表達(dá)式;
(2)求當(dāng)x=-3時(shí),函數(shù)y的值;
(3)求當(dāng)y=2時(shí),自變量x的值;
(4)當(dāng)y>1時(shí),自變量x的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】小明騎單車上學(xué),當(dāng)他騎了一段路時(shí),想起要買某本書,于是又折回到剛經(jīng)過的某書店,買到書后繼續(xù)去學(xué)校以下是他本次上學(xué)所用的時(shí)間與路程的關(guān)系示意圖.
![]()
根據(jù)圖中提供的信息回答下列問題:
(1)小明家到學(xué)校的路程是________米
(2)小明在書店停留了___________分鐘.
(3)本次上學(xué)途中,小明一共行駛了________ 米,一共用了______ 分鐘.
(4)在整個(gè)上學(xué)的途中_________(哪個(gè)時(shí)間段)小明騎車速度最快,最快的速度是___________米/分.
查看答案和解析>>
科目: 來源: 題型:
【題目】(1) 如圖1,MA1∥NA2,則∠A1+∠A2=_________度.
如圖2,MA1∥NA3,則∠A1+∠A2+∠A3=_________ 度.
如圖3,MA1∥NA4,則∠A1+∠A2+∠A3+∠A4=_________度.
如圖4,MA1∥NA5,則∠A1+∠A2+∠A3+∠A4+∠A5=_________度.
如圖5,MA1∥NAn,則∠A1+∠A2+∠A3+…+∠An=_________ 度.
![]()
(2) 如圖,已知AB∥CD,∠ABE和∠CDE的平分線相交于F,∠E=80°,求∠BFD的度數(shù).
![]()
【答案】(1) 180; 360; 540;720;180(n-1);(2)140°.
【解析】試題分析:(1)首先過各點(diǎn)作MA 1 的平行線,由MA 1 ∥NA 2 ,可得各線平行,根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ),即可求得答案;
(2)由(1)中的規(guī)律可得∠ABE+∠E+∠CDE=360°,所以∠ABE+∠CDE=360°-80°=280°,又因?yàn)?/span>BF、DF平分∠ABE和∠CDE,所以∠FBE+∠FDE=140°,又因?yàn)樗倪呅蔚膬?nèi)角和為360°,進(jìn)而可得答案.
試題解析:(1)如圖1,
∵M(jìn)A 1 ∥NA 2 ,
∴∠A 1 +∠A 2 =180°.
如圖2,過點(diǎn)A 2 作A 2 C 1 ∥A 1 M,
∵M(jìn)A 1 ∥NA 3 ,
∴A 2 C 1 ∥A 1 M∥NA 3 ,
∴∠A 1 +∠A 1 A 2 C 1 =180°,∠C 1 A 2 A 3 +∠A 3 =180°,
∴∠A 1 +∠A 2 +∠A 3 =360°.
如圖3,過點(diǎn)A 2 作A 2 C 1 ∥A 1 M,過點(diǎn)A 3 作A 3 C 2 ∥A 1 M,
∵M(jìn)A 1 ∥NA 3 ,
∴A 2 C 1 ∥A 3 C 2 ∥A 1 M∥NA 3 ,
∴∠A 1 +∠A 1 A 2 C 1 =180°,∠C 1 A 2 A 3 +∠A 2 A 3 C 2 =180°,∠C 2 A 3 A 4 +∠A 4 =180°,
∴∠A 1 +∠A 2 +∠A 3 +∠A 4 =540°.
如圖4,過點(diǎn)A 2 作A 2 C 1 ∥A 1 M,過點(diǎn)A 3 作A 3 C 2 ∥A 1 M,
∵M(jìn)A 1 ∥NA 3 ,
∴A 2 C 1 ∥A 3 C 2 ∥A 1 M∥NA 3 ,
∴∠A 1 +∠A 1 A 2 C 1 =180°,∠C 1 A 2 A 3 +∠A 2 A 3 C 2 =180°,∠C 2 A 3 A 4 +∠A 3 A 4 C 3 =180°,∠C 3 A 4 A 5 +∠A 5 =180°,
∴∠A 1 +∠A 2 +∠A 3 +∠A 4 +∠A 5 =720°;
從上述結(jié)論中你發(fā)現(xiàn)了規(guī)律:如圖5,MA 1 ∥NA n ,則∠A 1 +∠A 2 +∠A 3 +…+∠A n =180(n-1)度,
故答案為:180,360,540,720,180(n-1);
![]()
(2)由(1)可得∠ABE+∠E+∠CDE=360°,
∵∠E=80°,
∴∠ABE+∠CDE=360°-80°=280°,
又∵BF、DF平分∠ABE和∠CDE,
∴∠FBE+∠FDE=140°,
∵∠FBE+∠E+∠FDE+∠BFD=360°,
∴∠BFD=360°-80°-140°=140°.
【點(diǎn)睛】本題考查了平行線的性質(zhì):兩直線平行,同旁內(nèi)角互補(bǔ)、四邊形的內(nèi)角和是360°,解題的關(guān)鍵是,(1)小題正確添加輔助線,發(fā)現(xiàn)規(guī)律:MA 1 ∥NA n ,則∠A 1 +∠A 2 +∠A 3 +…+∠A n =180(n-1)度;(2)小題能應(yīng)用(1)中發(fā)現(xiàn)的規(guī)律.
【題型】解答題
【結(jié)束】
28
【題目】已知如圖1,線段AB、CD相交于點(diǎn)O,連結(jié)AC、BD,我們把形如圖1的圖形稱之為“8字形”,那么在這一個(gè)簡單的圖形中,到底隱藏了哪些數(shù)學(xué)知識呢?下面就請你發(fā)揮聰明才智,解決以下問題:
![]()
(1)在圖1中,請寫出∠A、∠B、∠C、∠D之間的數(shù)量關(guān)系,并說明理由;
(2)仔細(xì)觀察,在圖2中“8字形”的個(gè)數(shù)有 個(gè);
(3)在圖2中,若∠B=76°,∠C=80°,∠CAB和∠BDC的平分線AP和DP相交于點(diǎn)P,并且與CD、AB分別相交于M、N利用(1)的結(jié)論,試求∠P的度數(shù);
(4)在圖3中,如果∠B和∠C為任意角,并且AP和DP分別是∠CAB和∠BDC的三等分線,即∠PAO=
∠CAO, ∠BDP=
∠BOD,那么∠P與∠C、∠B之間存在的數(shù)量關(guān)系是 (直接寫出結(jié)論即可).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知△ABC內(nèi)接于⊙O,且AB=AC,直徑AD交BC于點(diǎn)E,F(xiàn)是OE上的一點(diǎn),使CF∥BD.
(1)求證:BE=CE;
(2)試判斷四邊形BFCD的形狀,并說明理由;
(3)若BC=8,AD=10,求CD的長.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】(1)填空21-20=2( ); 22-21=2( ) ;23 -22=2( )
(2)請用字母表示第n個(gè)等式,并驗(yàn)證你的發(fā)現(xiàn).
(3)利用(2)中你的發(fā)現(xiàn),求20+21+22+23+…+22016+22017的值.
【答案】(1)0,1,2;(2)證明見解析;(3)![]()
【解析】試題分析:(1)根據(jù)0次冪的意義和乘方的意義進(jìn)行計(jì)算即可;
(2)觀察各等式得到2的相鄰兩個(gè)非負(fù)整數(shù)冪的差等于其中較小的2的非負(fù)整數(shù)冪,即2n-2n-1=2n-1(n為正整數(shù));
(3)由于21-20=20,22-21=21,23-22=22,…22018-22017=22017,然后把等式左邊與左邊相加,右邊與右邊相加即可求解.
試題解析:(1)21-20=1=20;22-21=2=21;23-22=4=22,
故答案為:0,1,2;
(2)觀察可得:2n-2n-1=2n-1(n為正整數(shù)),證明如下:
2n-2n-1=2×2n-1-2n-1=2n-1×(2-1)=2n-1;
(3)∵21-20=20,
22-21=21,
23-22=22,
…
22018-22017=22017,
∴22018-20=20+21+22+23+…+22016+22017,
∴20+21+22+23+…+22016+22017的值為22018-1.
【題型】解答題
【結(jié)束】
27
【題目】(1) 如圖1,MA1∥NA2,則∠A1+∠A2=_________度.
如圖2,MA1∥NA3,則∠A1+∠A2+∠A3=_________ 度.
如圖3,MA1∥NA4,則∠A1+∠A2+∠A3+∠A4=_________度.
如圖4,MA1∥NA5,則∠A1+∠A2+∠A3+∠A4+∠A5=_________度.
如圖5,MA1∥NAn,則∠A1+∠A2+∠A3+…+∠An=_________ 度.
![]()
(2) 如圖,已知AB∥CD,∠ABE和∠CDE的平分線相交于F,∠E=80°,求∠BFD的度數(shù).
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,如圖, AB∥CD,∠1=∠2,那么∠E和∠F相等嗎? 為什么?
![]()
【答案】相等,理由見解析.
【解析】試題分析:分別過E、F 點(diǎn)作CD的平行線EM、FN,根據(jù)平行線的性質(zhì)得CD∥FN∥EM∥AB,則∠3=∠1,∠4=∠5,∠1=∠6,而∠1=∠2,于是3+∠4=∠5+∠6.
試題解析:分別過E、F 點(diǎn)作CD的平行線EM、FN,如圖
∵AB∥CD,
∴CD∥FN∥EM∥AB,
∴∠3=∠2,∠4=∠5,∠1=∠6,
而∠1=∠2,
∴∠3+∠4=∠5+∠6,
即∠BEF=∠EFC.
![]()
【題型】解答題
【結(jié)束】
26
【題目】(1)填空21-20=2( ); 22-21=2( ) ;23 -22=2( )
(2)請用字母表示第n個(gè)等式,并驗(yàn)證你的發(fā)現(xiàn).
(3)利用(2)中你的發(fā)現(xiàn),求20+21+22+23+…+22016+22017的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com