科目: 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,若將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°,得到△FEC
(1)猜想AE與BF有何關(guān)系,說(shuō)明理由.
(2)若△ABC的面積為3cm2,求四邊形ABFE的面積.
(3)當(dāng)∠ACB為多少度時(shí),四邊形ABFE為矩形?
![]()
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,DE是AC的垂直平分線.
![]()
(1)求證:△BCD是等腰三角形;
(2)△BCD的周長(zhǎng)是a,BC=b,求△ACD的周長(zhǎng)(用含a,b的代數(shù)式表示)
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某校在八年級(jí)(1)班學(xué)生中開(kāi)展對(duì)于“我國(guó)國(guó)家公祭日”知曉情況的問(wèn)卷調(diào)查.
問(wèn)卷調(diào)查的結(jié)果分為A、B、C、D四類(lèi),其中A類(lèi)表示“非常了解”;B類(lèi)表示“比較了解”;C類(lèi)表示“基本了解”;D類(lèi)表示“不太了解”;班長(zhǎng)將本班同學(xué)的調(diào)查結(jié)果繪制成下列兩幅不完整的統(tǒng)計(jì)圖.
![]()
請(qǐng)根據(jù)上述信息解答下列問(wèn)題:
(1)該班參與問(wèn)卷調(diào)查的人數(shù)有 人;補(bǔ)全條形統(tǒng)計(jì)圖;
(2)求出C類(lèi)人數(shù)占總調(diào)查人數(shù)的百分比及扇形統(tǒng)計(jì)圖中
類(lèi)所對(duì)應(yīng)扇形圓心角的度數(shù).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】(本題滿(mǎn)分10分)如圖,已知直線
和雙曲線
(k>0),點(diǎn)A(m,n)在雙曲線
上.當(dāng)m=n=2時(shí).
(1)直接寫(xiě)出k的值;
(2)將直線
作怎樣的平移能使平移后的直線與雙曲線
只有一個(gè)交點(diǎn).
![]()
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知:點(diǎn)O到△ABC的兩邊AB、AC所在直線的距離OD=OE,且OB=OC.
(1)如圖,若點(diǎn)O在BC上,求證:AB=AC;
(2)如圖,若點(diǎn)O在△ABC的內(nèi)部,求證:AB=AC;
(3)若點(diǎn)O在△ABC的外部,AB=AC成立嗎?請(qǐng)畫(huà)圖表示.
![]()
![]()
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知銳角三角形ABC內(nèi)接于⊙O,AD⊥BC,垂足為D.
(1)如圖1,
,BD=DC,求∠B的度數(shù);
(2)如圖2,BE⊥AC,垂足為E,BE交AD于點(diǎn)F,過(guò)點(diǎn)B作BG∥AD交⊙O于點(diǎn)G,在AB邊上取一點(diǎn)H,使得AH=BG.求證:△AFH是等腰三角形.
![]()
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知拋物線
與y軸交于點(diǎn)C,與x軸的兩個(gè)交點(diǎn)分別為A(-4,0),B(1,0).
(1)求拋物線的解析式;
(2)已知點(diǎn)P在拋物線上,連接PC、PB,若△PBC是以BC為直角邊的直角三角形,求點(diǎn)P的坐標(biāo);
(3)已知點(diǎn)E在x軸上,點(diǎn)F在拋物線上,是否存在以A、C、E、F為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
![]()
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】(10分)已知△ABC是等邊三角形,點(diǎn)D是直線BC上一點(diǎn),以AD為一邊在AD的右側(cè)作等邊△ADE.
(1)如圖①,點(diǎn)D在線段BC上移動(dòng)時(shí),直接寫(xiě)出∠BAD和∠CAE的大小關(guān)系;
(2)如圖②,點(diǎn)D在線段BC的延長(zhǎng)線上移動(dòng)時(shí),猜想∠DCE的大小是否發(fā)生變化.若不變請(qǐng)求出其大。蝗糇兓,請(qǐng)說(shuō)明理由.
![]()
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖,己知△ABC是等邊三角形,點(diǎn)P在△ABC內(nèi),點(diǎn)Q在△ABC外,分別連接AP、BP、AQ、CQ,∠ABP=∠ACQ, BP=CQ.
![]()
(1)求證:△ABP≌△ACQ;
(2)連接PQ,求證△APQ是等邊三角形;
(3)連接P設(shè)△CPQ是以
PQC為頂角的等腰三角形,且∠BPC=100
,求∠APB的度數(shù).
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com