科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=2,△ABC繞點C順時針旋轉(zhuǎn)得△A1B1C,當點A1落在AB邊上時,連接B1B,取BB1的中點D,連接A1D,則A1D的長度是( )![]()
A.![]()
B.2 ![]()
C.3
D.2 ![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△AOB是等腰直角三角形,直線BD∥OA,OB=OA=1,P是線段AB上一動點,過P點作MN∥OB,分別交OA、BD于M、N,PC⊥PO,交BD于點C.
(1)求證:OP=PC;
(2)當點C在射線BN上時,設(shè)AP長為m,四邊形POBC的面積為S,請求出S與m間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)當點P在線段AB上移動時,點C也隨之在直線BN上移動,△PBC是否可能成為等腰三角形?如果可能,求出所有能使△PBC成為等腰三角形時的PM的值;如果不可能,請說明理由.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標系中,點B,C,E在y軸上,Rt△ABC經(jīng)過變換得到Rt△ODE,若點C的坐標為(0,1),AC=2,則這種變換可以是( )![]()
A.△ABC繞點C順時針旋轉(zhuǎn)90°,再向下平移3個單位長度
B.△ABC繞點C順時針旋轉(zhuǎn)90°,再向下平移1個單位長度
C.△ABC繞點C逆時針旋轉(zhuǎn)90°,再向下平移1個單位長度
D.△ABC繞點C逆時針旋轉(zhuǎn)90°,再向下平移3個單位長度
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在⊙O上,點D在AB延長線上,且∠BCD=∠A.
(1)求證:DC是⊙O的切線;
(2)若∠A=30°,AC=2
,求圖中陰影部分的面積.
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,DABC中,AB=BC=AC=12cm,現(xiàn)有兩點M,N分別從現(xiàn)有兩點M、N分別從點A、點B同時出發(fā),沿三角形的邊運動,已知點M的速度為1cm/s,點N的速度為2cm/s.當點N第一次到達B點時,M、N同時停止運動.![]()
(1)點M、N運動幾秒后,M、N兩點重合?
(2)點M、N運動幾秒后,可得到等邊三角形△AMN?
(3)當點M、N在BC邊上運動時,能否得到以MN為底邊的等腰三角形?如存在,請求出此時M、N運動的時間.
查看答案和解析>>
科目: 來源: 題型:
【題目】“成自”高鐵自貢仙市段在建設(shè)時,甲、乙兩個工程隊計劃參與該項工程建設(shè),甲隊單獨施工30天完成該項工程的
,這時乙隊加入,兩隊還需同時施工30天,才能完成該項工程.
(1)若乙隊單獨施工,需要多少天才能完成該項工程?
(2)若甲隊參與該項工程施工的時間不超過40天,則乙隊至少施工多少天才能完成該項工程?
查看答案和解析>>
科目: 來源: 題型:
【題目】學校實施新課程改革以來,學生的學習能力有了很大提高.王老師為進一步了解本班學生自主學習、合作交流的現(xiàn)狀,對該班部分學生進行調(diào)查,把調(diào)查結(jié)果分成四類(A:特別好,B:好,C:一般,D:較差)后,再將調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計圖(如圖).請根據(jù)統(tǒng)計圖解答下列問題:
![]()
(1)本次調(diào)查中,王老師一共調(diào)查了 名學生;
(2)將條形統(tǒng)計圖補充完整;
(3)為了共同進步,王老師從被調(diào)查的A類和D類學生中分別選取一名學生進行“兵教兵”互助學習,請用列表或畫樹狀圖的方法求出恰好選中一名男生和一名女生的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】一次函數(shù)y=3x﹣2的圖象上有兩點A(﹣1,y1),B(﹣2,y2),則y1與y2的大小關(guān)系為( 。
A. y1>y2 B. y1<y2 C. y1=y2 D. 不能確定
查看答案和解析>>
科目: 來源: 題型:
【題目】問題提出:如圖1,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半徑為2,P為圓上一動點,連結(jié)AP、BP,求AP+
BP的最小值.
(1)嘗試解決:為了解決這個問題,下面給出一種解題思路:如圖2,連接CP,在CB上取點D,使CD=1,則有
,又∵∠PCD=∠BCP,∴△PCD∽△BCP.∴
,∴PD=
BP,∴AP+
BP=AP+PD.
請你完成余下的思考,并直接寫出答案:AP+
BP的最小值為 .
(2)自主探索:在“問題提出”的條件不變的情況下,
AP+BP的最小值為 .
(3)拓展延伸:已知扇形COD中,∠COD=90°,OC=6,OA=3,OB=5,點P是
上一點,求2PA+PB的最小值.
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com