科目: 來源: 題型:
【題目】如圖,已知AB⊥BC,DC⊥BC,∠1=∠2,可得到BE∥CF,說明過程如下,請(qǐng)?zhí)钌险f明的依據(jù):
![]()
因?yàn)锳B⊥BC,DC⊥BC,
所以∠ABC=90°,
∠BCD=90°(______________),
所以∠ABC=∠BCD.
又因?yàn)椤?=∠2,
所以∠EBC=∠FCB.
所以BE∥CF(______________).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,一次函數(shù)y=
x+3的圖象與y軸交于點(diǎn)A,點(diǎn)M在正比例函數(shù)y=
x的圖象x>0的那部分上,且MO=MA(O為坐標(biāo)原點(diǎn)).
(1)求線段AM的長(zhǎng);
(2)若反比例函數(shù)y=
的圖象經(jīng)過點(diǎn)M關(guān)于y軸的對(duì)稱點(diǎn)M′,求反比例函數(shù)解析式,并直接寫出當(dāng)x>0時(shí),
x+3與
的大小關(guān)系.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知OABC的頂點(diǎn)A、C分別在直線x=2和x=4上,O為坐標(biāo)原點(diǎn),直線x=2分別與x軸和OC邊交于D、E,直線x=4分別與x軸和AB邊的交于點(diǎn)F、G.![]()
(1)如圖,在點(diǎn)A、C移動(dòng)的過程中,若點(diǎn)B在x軸上,
①直線 AC是否會(huì)經(jīng)過一個(gè)定點(diǎn),若是,請(qǐng)直接寫出定點(diǎn)的坐標(biāo);若否,請(qǐng)說明理由.
②OABC是否可以形成矩形?如果可以,請(qǐng)求出矩形OABC的面積;若否,請(qǐng)說明理由.
③四邊形AECG是否可以形成菱形?如果可以,請(qǐng)求出菱形AECG的面積;若否,請(qǐng)說明理由.
(2)在點(diǎn)A、C移動(dòng)的過程中,若點(diǎn)B不在x軸上,且當(dāng)OABC為正方形時(shí),直接寫出點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖:∠1=∠2,∠3+∠4= 180°;確定直線a,c的位置關(guān)系,并說明理由;
![]()
解:a c;
理由:∵∠1=∠2( ),
∴ a // ( );
∵ ∠3+∠4= 180°( ),
∴ c // ( );
∵ a // ,c // ,
∴ // ( );
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=54°,以AB為直徑的 ⊙O分別交AC,BC于點(diǎn)D,E,過點(diǎn)B作⊙O的切線,交AC的延長(zhǎng)線于點(diǎn)F.
(1)求證:BE=CE;
(2)求∠CBF的度數(shù);
(3)若AB=6,求
的長(zhǎng).
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】已知正方形ABCD的邊長(zhǎng)為4,一個(gè)以點(diǎn)A為頂點(diǎn)的45°角繞點(diǎn)A旋轉(zhuǎn),角的兩邊分別與邊BC、DC的延長(zhǎng)線交于點(diǎn)E、F,連接EF.設(shè)CE=a,CF=b.![]()
(1)如圖1,當(dāng)∠EAF被對(duì)角線AC平分時(shí),求a、b的值;
(2)當(dāng)△AEF是直角三角形時(shí),求a、b的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】八年級(jí)一班開展了“讀一本好書”的活動(dòng),班委會(huì)對(duì)學(xué)生閱讀書籍的情況進(jìn)行了問卷調(diào)查,問卷設(shè)置了“小說”“戲劇”“散文”“其他”四個(gè)類型,每位同學(xué)僅選一項(xiàng),根據(jù)調(diào)查結(jié)果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖.
類別 | 頻數(shù)(人數(shù)) | 頻率 |
小說 | 0.5 | |
戲劇 | 4 | |
散文 | 10 | 0.25 |
其他 | 6 | |
合計(jì) | 1 |
根據(jù)圖表提供的信息,解答下列問題:
(1)八年級(jí)一班有多少名學(xué)生?
(2)請(qǐng)補(bǔ)全頻數(shù)分布表,并求出扇形統(tǒng)計(jì)圖中“其他”類所占的百分比;
(3)在調(diào)查問卷中,甲、乙、丙、丁四位同學(xué)選擇了“戲劇”類,現(xiàn)從以上四位同學(xué)中任意選出2名同學(xué)參加學(xué)校的戲劇興趣小組,請(qǐng)用畫樹狀圖或列表法的方法,求選取的2人恰好是乙和丙的概率.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com