科目: 來源: 題型:
【題目】設ω是一個平面圖形,如果用直尺和圓規(guī)經(jīng)過有限步作圖(簡稱尺規(guī)作圖),畫出一個正方形與ω的面積相等(簡稱等積),那么這樣的等積轉(zhuǎn)化稱為ω的“化方”.
(1)閱讀填空
如圖①,已知矩形ABCD,延長AD到E,使DE=DC,以AE為直徑作半圓.延長CD交半圓于點H,以DH為邊作正方形DFGH,則正方形DFGH與矩形ABCD等積.
理由:連接AH,EH.
∵AE為直徑,∴∠AHE=90°,∴∠HAE+∠HEA=90°.
∵DH⊥AE,∴∠ADH=∠EDH=90°
∴∠HAD+∠AHD=90°
∴∠AHD=∠HED,∴△ADH∽ .
∴
,即DH2=AD×DE.
又∵DE=DC
∴DH2= ,即正方形DFGH與矩形ABCD等積.
(2)操作實踐
平行四邊形的“化方”思路是,先把平行四邊形轉(zhuǎn)化為等積的矩形,再把矩形轉(zhuǎn)化為等積的正方形.
如圖②,請用尺規(guī)作圖作出與ABCD等積的矩形(不要求寫具體作法,保留作圖痕跡).
(3)解決問題三角形的“化方”思路是:先把三角形轉(zhuǎn)化為等積的 (填寫圖形名稱),再轉(zhuǎn)化為等積的正方形.
如圖③,△ABC的頂點在正方形網(wǎng)格的格點上,請作出與△ABC等積的正方形的一條邊(不要求寫具體作法,保留作圖痕跡,不通過計算△ABC面積作圖).
(4)拓展探究
n邊形(n>3)的“化方”思路之一是:把n邊形轉(zhuǎn)化為等積的n﹣1邊形,…,直至轉(zhuǎn)化為等積的三角形,從而可以化方.
如圖④,四邊形ABCD的頂點在正方形網(wǎng)格的格點上,請作出與四邊形ABCD等積的三角形(不要求寫具體作法,保留作圖痕跡,不通過計算四邊形ABCD面積作圖).
![]()
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀理解:
如圖①,如果四邊形ABCD滿足AB=AD,CB=CD,∠B=∠D=90°,那么我們把這樣的四邊形叫做“完美箏形”.
將一張如圖①所示的“完美箏形”紙片ABCD先折疊成如圖②所示形狀,再展開得到圖③,其中CE,CF為折痕,∠BCE=∠ECF=∠FCD,點B′為點B的對應點,點D′為點D的對應點,連接EB′,F(xiàn)D′相交于點O.
![]()
簡單應用:
(1)在平行四邊形、矩形、菱形、正方形四種圖形中,一定為“完美箏形”的是 ;
(2)當圖③中的∠BCD=120°時,∠AEB′= °;
(3)當圖②中的四邊形AECF為菱形時,對應圖③中的“完美箏形”有 個(包含四邊形ABCD).
拓展提升:
(4)當圖③中的∠BCD=90°時,連接AB′,請?zhí)角蟆螦B′E的度數(shù),并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC中,D、E在AB上,且D、E分別是AC、BC的垂直平分線上一點.![]()
(1)若△CDE的周長為4,求AB的長;
(2)若∠ACB=100°,求∠DCE的度數(shù);
(3)若∠ACB=a(90°<a<180°),則∠DCE=。
查看答案和解析>>
科目: 來源: 題型:
【題目】甲、乙、丙、丁四位選手各10次射擊的平均成績都是9.2環(huán),其中甲的成績的方差為0.015, 乙的成績的方差為0.035,丙的成績的方差為0.025,丁的成績的方差為0.027,由此可知
(A)甲的成績最穩(wěn)定 (B)乙的成績最穩(wěn)定
(C)丙的成績最穩(wěn)定 (D)丁的成績最穩(wěn)定
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知在△ABC中,∠C=90°,AB的垂直平分線MN交BC于點D。![]()
(1)如果∠CAD=20°,求∠B的度數(shù)。
(2)如果∠CAB=50°,求∠CAD的度數(shù)。
(3)如果∠CAD:∠DAB=1:2,求∠CAB的度數(shù)。
查看答案和解析>>
科目: 來源: 題型:
【題目】下列命題中,真命題是( )
A. 對角線相等的四邊形是矩形
B. 對角線互相垂直平分的四邊形是菱形
C. 一組對邊平行,另一組對邊相等的四邊形是平行四邊形
D. 一組鄰邊相等,并且有一個內(nèi)角為直角的四邊形是正方形
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com